2018年高考數(shù)學(xué)二輪復(fù)習(xí) 專題06 三角函數(shù)的圖像與性質(zhì)教學(xué)案 理

上傳人:彩*** 文檔編號:104390411 上傳時間:2022-06-10 格式:DOC 頁數(shù):31 大?。?.07MB
收藏 版權(quán)申訴 舉報 下載
2018年高考數(shù)學(xué)二輪復(fù)習(xí) 專題06 三角函數(shù)的圖像與性質(zhì)教學(xué)案 理_第1頁
第1頁 / 共31頁
2018年高考數(shù)學(xué)二輪復(fù)習(xí) 專題06 三角函數(shù)的圖像與性質(zhì)教學(xué)案 理_第2頁
第2頁 / 共31頁
2018年高考數(shù)學(xué)二輪復(fù)習(xí) 專題06 三角函數(shù)的圖像與性質(zhì)教學(xué)案 理_第3頁
第3頁 / 共31頁

下載文檔到電腦,查找使用更方便

46 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018年高考數(shù)學(xué)二輪復(fù)習(xí) 專題06 三角函數(shù)的圖像與性質(zhì)教學(xué)案 理》由會員分享,可在線閱讀,更多相關(guān)《2018年高考數(shù)學(xué)二輪復(fù)習(xí) 專題06 三角函數(shù)的圖像與性質(zhì)教學(xué)案 理(31頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 專題06 三角函數(shù)的圖像與性質(zhì) 1.三角函數(shù)y=Asin (ωx+φ)(A>0,ω>0)的圖象變換,周期及單調(diào)性是高考熱點. 2.備考時應(yīng)掌握y=sin x,y=cos x,y=tan x的圖象與性質(zhì),并熟練掌握函數(shù)y=Asin (ωx+φ)(A>0,ω>0)的值域、單調(diào)性、周期性等. 1.任意角和弧度制 (1)終邊相同的角:所有與角α終邊相同的角,連同角α在內(nèi),可構(gòu)成一個集合S={β|β=α+k·360°,k∈Z}. (2)把長度等于半徑長的弧所對的圓心角叫做1弧度的角. (3)弧長公式:l=|α|r, 扇形的面積公式:S=lr=|α|r2. 2.任意角的三角函數(shù)

2、 (1)設(shè)α是一個任意角,它的終邊與單位圓交于點P(x,y),那么sinα=y(tǒng),cosα=x,tanα=(x≠0). (2)各象限角的三角函數(shù)值的符號:一全正,二正弦,三正切,四余弦. 3.誘導(dǎo)公式 公式一 sin(2kπ+α)=sinα,cos(2kπ+α)=cosα, tan(2kπ+α)=tanα 公式二 sin(π+α)=-sinα,cos(π+α)=-cosα, tan(π+α)=tanα 公式三 sin(-α)=-sinα,cos(-α)=cosα, tan(-α)=-tanα 公式四 sin(π-α)=sinα,cos(π-α)=-cosα, tan

3、(π-α)=-tanα 公式五 sin=cosα,cos=sinα 公式六 sin=cosα,cos=-sinα 口訣 奇變偶不變,符號看象限 4.同角三角函數(shù)基本關(guān)系式 sin2α+cos2α=1,tanα=(cosα≠0). 5.正弦、余弦、正切函數(shù)的性質(zhì) 函數(shù) y=sinx y=cosx y=tanx 定義域 R R {x|x≠+kπ,k∈Z} 值域 [-1,1] [-1,1] R 奇偶性 奇函數(shù) 偶函數(shù) 奇函數(shù) 最小正周期 2π 2π π 單調(diào)性 在[-+2kπ,+2kπ](k∈Z)上遞增. 在[+2kπ,+2kπ](

4、k∈Z)上遞減 在[-π+2kπ,2kπ](k∈Z)上遞增.在[2kπ,π+2kπ](k∈Z)上遞減 在(-+kπ,+kπ)(k∈Z)上遞增 最值 當(dāng)x=+2kπ,k∈Z時,y取得最大值1. 當(dāng)x=-+2kπ,k∈Z時,y取得最小值-1 當(dāng)x=2kπ,k∈Z時,y取得最大值1. 當(dāng)x=π+2kπ,k∈Z時,y取得最小值-1 無最值 對稱性 對稱中心:(kπ,0)(k∈Z). 對稱軸:x=+kπ(k∈Z) 對稱中心:(+kπ,0)(k∈Z). 對稱軸:x=kπ(k∈Z) 對稱中心:(,0)(k∈Z) 6.函數(shù)y=Asin(ωx+φ)的圖象 (1)“五點法”作圖

5、設(shè)z=ωx+φ,令z=0、、π、、2π,求出x的值與相應(yīng)的y的值,描點連線可得. 考點一 三角函數(shù)圖象及其變換 例1、【2017課標(biāo)1,理9】已知曲線C1:y=cos x,C2:y=sin (2x+),則下面結(jié)論正確的是 A. 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2 B. 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2 C. 把C1上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2 D. 把C1上各點的橫坐標(biāo)縮短到原來的倍

6、,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2 【答案】D 【解析】因為函數(shù)名不同,所以先將利用誘導(dǎo)公式轉(zhuǎn)化成與相同的函數(shù)名,則,則由上各點的橫坐標(biāo)縮短到原來的倍變?yōu)?,再將曲線向左平移個單位長度得到,故選D. 【變式探究】(2016·高考全國甲卷)函數(shù)y=Asin(ωx+φ)的部分圖象如圖所示,則(  ) A.y=2sin    B.y=2sin C.y=2sin D.y=2sin 答案:A 【變式探究】 (1)函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調(diào)遞減區(qū)間為(  ) A.,k∈Z B.,k∈Z C.,k∈Z

7、D.,k∈Z 解析:基本法:由函數(shù)圖象知T=2×=2. ∴=2,即ω=π. 由π×+φ=+2kπ,k∈Z,不妨設(shè)φ=. ∴f(x)=cos 由2kπ<πx+<2kπ+π得, 2k-<x<2k+,k∈Z,故選D. 速解法:由題圖可知=-=1,所以T=2. 結(jié)合題圖可知,在(f(x)的一個周期)內(nèi),函數(shù)f(x)的單調(diào)遞減區(qū)間為.由f(x)是以2為周期的周期函數(shù)可知,f(x)的單調(diào)遞減區(qū)間為,k∈Z,故選D. 答案:D (2)要得到函數(shù)y=sin的圖象,只需將函數(shù)y=sin 4x的圖象(  ) A.向左平移個單位   B.向右平移個單位 C.向左平移個單位 D.向右平移個

8、單位 答案:B 考點二 三角函數(shù)性質(zhì)及應(yīng)用 例2、【2017課標(biāo)1,理17】△ABC的內(nèi)角A,B, C的對邊分別為a,b,c,已知△ABC的面積為 (1)求sinBsinC; (2)若6cosBcosC=1,a=3,求△ABC的周長. 【答案】(1).(2). 【解析】 (1)由題設(shè)得,即. 由正弦定理得. 故. 【變式探究】(1)如圖,長方形ABCD的邊AB=2,BC=1,O是AB的中點,點P沿著邊BC,CD與DA運動,記∠BOP=x.將動點P到A,B兩點距離之和表示為x的函數(shù)f(x),則y=f(x)的圖象大致為(  ) 解析:基本法:用排除

9、法排除錯誤選項. 當(dāng)x∈時,f(x)=tan x+,圖象不會是直線段,從而排除A,C. 當(dāng)x∈時,f=f=1+, f=2.∵2<1+,∴f<f=f,從而排除D,故選B. 速解法:當(dāng)x=時,f=1+. x=時,f=2,顯然f<f排除C、D. 又∵x為角度,f(x)不是一次函數(shù),排除A,故選B. 答案:B (2)函數(shù)f(x)=sin(x+2φ)-2sin φcos(x+φ)的最大值為________. 解析:基本法:利用三角恒等變換將原式化簡成只含一種三角函數(shù)的形式. ∵f(x)=sin(x+2φ)-2sin φcos(x+φ) =sin[(x+φ)+φ]-2sin φco

10、s(x+φ) =sin(x+φ)cos φ+cos(x+φ)sin φ-2sin φcos(x+φ) =sin(x+φ)cos φ-cos(x+φ)sin φ =sin[(x+φ)-φ]=sin x, ∴f(x)的最大值為1. 速解法:∵φ為常數(shù),令φ=0時,f(x)=sin x. 若φ=,則f(x)=sin-cos=sin x 猜想f(x)=sin x f(x)max=1. 答案:1 (3)設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期為π,且f(-x)=f(x),則(  ) A.f(x)在單調(diào)遞減 B.f(x)在單調(diào)遞減 C.f(x)在單調(diào)遞

11、增 D.f(x)在單調(diào)遞增 速解法:由f(x)=sin知T==π, ∴ω=2. f(x)為偶函數(shù),∴φ+=,∴φ=. ∴f(x)=cos 2x依據(jù)圖象特征可得f(x)在為減區(qū)間. 答案:A 【變式探究】(2016·高考全國甲卷)函數(shù)f(x)=cos 2x+6cos的最大值為(  ) A.4 B.5 C.6 D.7 解析:f(x)=1-2sin2x+6sin x=-22+,因為sin x∈[-1,1],所以當(dāng)sin x=1時,f(x)取得最大值,且f(x)max=5. 答案:B 1.【2017課標(biāo)1,理9】已知曲線C1:y=cos x,C2:y=sin (

12、2x+),則下面結(jié)論正確的是 A. 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2 B. 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2 C. 把C1上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2 D. 把C1上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2 【答案】D 2.【2017課標(biāo)1,理17】△ABC的內(nèi)角A,B, C的對邊分別為a,b,c,已知△ABC的面積為 (1)求sinBs

13、inC; (2)若6cosBcosC=1,a=3,求△ABC的周長. 【答案】(1).(2). 【解析】 (1)由題設(shè)得,即. 由正弦定理得. 故. 1.【2016高考新課標(biāo)3理數(shù)】在中,,邊上的高等于,則( ) (A) (B) (C) (D) 【答案】C 【解析】設(shè)邊上的高為,則,所以,.由余弦定理,知,故選C. 2.【2016高考新課標(biāo)2理數(shù)】若,則( ) (A) (B) (C) (D) 【答案】D 【解析】 , 且,故選D.

14、 3.【2016高考新課標(biāo)3理數(shù)】若 ,則( ) (A) (B) (C) 1 (D) 【答案】A 【解析】 由,得或,所以,故選A. 4.【2016年高考四川理數(shù)】= . 【答案】 【解析】[由二倍角公式得 5.【2016年高考四川理數(shù)】為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點( ) (A)向左平行移動個單位長度 (B)向右平行移動個單位長度 (C)向左平行移動個單位長度  (D)向右平行移動個單位長度 【答案】D 6.【2016高考

15、新課標(biāo)2理數(shù)】若將函數(shù)的圖像向左平移個單位長度,則平移后圖象的對稱軸為( ) (A) (B) (C) (D) 【答案】B 【解析】由題意,將函數(shù)的圖像向左平移個單位得,則平移后函數(shù)的對稱軸為,即,故選B. 7.【2016年高考北京理數(shù)】將函數(shù)圖象上的點向左平移() 個單位長度得到點,若位于函數(shù)的圖象上,則( ) A.,的最小值為B. ,的最小值為 C.,的最小值為D.,的最小值為 【答案】A 【解析】由題意得,,當(dāng)s最小時,所對應(yīng)的點為,此時,故選A. 8.【2016高考新課標(biāo)3理數(shù)】函數(shù)的圖像可

16、由函數(shù)的圖像至少向右平移_____________個單位長度得到. 【答案】 9.【2016高考浙江理數(shù)】設(shè)函數(shù),則的最小正周期( ) A.與b有關(guān),且與c有關(guān) B.與b有關(guān),但與c無關(guān) C.與b無關(guān),且與c無關(guān) D.與b無關(guān),但與c有關(guān) 【答案】B 【解析】,其中當(dāng)時,,此時周期是;當(dāng)時,周期為,而不影響周期.故選B. 10.【2016高考山東理數(shù)】函數(shù)f(x)=(sin x+cos x)(cos x –sin x)的最小正周期是( ) (A) (B)π

17、 (C) (D)2π 【答案】B 【解析】,故最小正周期,故選B. 11.【2016年高考四川理數(shù)】為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點( ) (A)向左平行移動個單位長度 (B)向右平行移動個單位長度 (C)向左平行移動個單位長度 ?。―)向右平行移動個單位長度 【答案】D 【解析】由題意,為了得到函數(shù),只需把函數(shù)的圖像上所有點向右移個單位,故選D. 12.【2016高考新課標(biāo)2理數(shù)】若將函數(shù)的圖像向左平移個單位長度,則平移后圖象的對稱軸為( ) (A) (B) (C)

18、 (D) 【答案】B 13.【2016年高考北京理數(shù)】將函數(shù)圖象上的點向左平移() 個單位長度得到點,若位于函數(shù)的圖象上,則( ) A.,的最小值為B. ,的最小值為 C.,的最小值為D.,的最小值為 【答案】A 【解析】由題意得,,當(dāng)s最小時,所對應(yīng)的點為,此時,故選A. 14.【2016高考新課標(biāo)3理數(shù)】函數(shù)的圖像可由函數(shù)的圖像至少向右平移_____________個單位長度得到. 【答案】 15.【2016高考新課標(biāo)3理數(shù)】在中,,邊上的高等于,則( ) (A) (B) (C)

19、(D) 【答案】C 【解析】設(shè)邊上的高為,則,所以,.由余弦定理,知,故選C. 16.【2016高考新課標(biāo)2理數(shù)】若,則( ) (A) (B) (C) (D) 【答案】D 【解析】 , 且,故選D. 17.【2016高考新課標(biāo)3理數(shù)】若 ,則( ) (A) (B) (C) 1 (D) 【答案】A 【2015高考新課標(biāo)1,理2】 =( ) (A) (B) (C) (D)

20、【答案】D 【解析】原式= ==,故選D. 【2015江蘇高考,8】已知,,則的值為_______. 【答案】3 【解析】 【2015高考福建,理19】已知函數(shù)的圖像是由函數(shù)的圖像經(jīng)如下變換得到:先將圖像上所有點的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變),再將所得到的圖像向右平移個單位長度. (Ⅰ)求函數(shù)的解析式,并求其圖像的對稱軸方程; (Ⅱ)已知關(guān)于的方程在內(nèi)有兩個不同的解. (1)求實數(shù)m的取值范圍; (2)證明: 【答案】(Ⅰ) ,;(Ⅱ)(1);(2)詳見解析. 【解析】解法一:(1)將的圖像上所有點的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到的圖像,再將的圖像向右平

21、移個單位長度后得到的圖像,故,從而函數(shù)圖像的對稱軸方程為 (2)1) (其中) 解法二:(1)同解法一. (2)1) 同解法一. 2) 因為是方程在區(qū)間內(nèi)有兩個不同的解, 所以,. 當(dāng)時, 當(dāng)時, 所以 于是 【2015高考山東,理16】設(shè). (Ⅰ)求的單調(diào)區(qū)間; (Ⅱ)在銳角中,角的對邊分別為,若,求面積的最大值. 【答案】(I)單調(diào)遞增區(qū)間是; 單調(diào)遞減區(qū)間是 (II) 面積的最大值為 (Ⅱ)由 得 由題意知為銳角,所以 由余弦定理: 可得: 即: 當(dāng)且僅當(dāng)時等號成立. 因此 所以面積的最大值為 【2015

22、高考重慶,理9】若,則( ?。? A、1 B、2 C、3 D、4 【答案】C 【2015高考山東,理3】要得到函數(shù)的圖象,只需要將函數(shù)的圖象( ) (A)向左平移個單位?? (B)向右平移個單位 (C)向左平移個單位??? (D)向右平移個單位 【答案】B 【解析】因為 ,所以要得到函數(shù) 的圖象,只需將函數(shù) 的圖象向右平移 個單位.故選B. 【2015高考新課標(biāo)1,理8】函數(shù)=的部分圖像如圖所示,則的單調(diào)遞減區(qū)間為(

23、 ) (A) (B) (C) (D) 【答案】D 【解析】由五點作圖知,,解得,,所以,令,解得<<,,故單調(diào)減區(qū)間為(,),,故選D. 1. 【2014高考湖南卷第9題】已知函數(shù)且則函數(shù)的圖象的一條對稱軸是( ) A. B. C. D. 【答案】A 【考點定位】三角函數(shù)圖像、輔助角公式 2. 【2014高考江蘇卷第5題】已知函數(shù)與函數(shù),它們的圖像有一個橫坐標(biāo)為的交點,則的值是 . 【答案】 【解析】由題意,即,,,因為,所以. 【考點】三角函數(shù)圖象的交點與已知三角函

24、數(shù)值求角. 3. 【2014遼寧高考理第9題】將函數(shù)的圖象向右平移個單位長度,所得圖象對應(yīng)的函數(shù)( ) A.在區(qū)間上單調(diào)遞減 B.在區(qū)間上單調(diào)遞增 C.在區(qū)間上單調(diào)遞減 D.在區(qū)間上單調(diào)遞增 【答案】B 【考點定位】函數(shù)的性質(zhì). 4. 【2014四川高考理第3題】為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點( ) A.向左平行移動個單位長度 B.向右平行移動個單位長度 C.向左平行移動個單位長度 D.向右平行移動個單位長度 【答案】A 【解析】,所以只需把的圖象上所有的點向左平移個單位.選A. 【考點定位】三角函數(shù)圖象的變換. 5. 【2

25、014全國1高考理第6題】如圖,圖O的半徑為1,A是圓上的定點,P是圓上的動點,角x的始邊為射線OA,終邊為射線OP,過點P作直線OA的垂線,垂足為M,將點M到直線OP的距離表示成x的函數(shù),則的圖像大致為( ) 【答案】C 【考點定位】解直角三角形、三角函數(shù)的圖象. 6. 【2014高考北卷理第14題】設(shè)函數(shù)(是常數(shù),).若在區(qū)間上具有單調(diào)性,且,則的最小正周期為 . 【答案】 【考點定位】函數(shù)的對稱性、周期性, 7. 【2014高考安徽卷理第11題】若將函數(shù)的圖像向右平移個單位,所得圖像關(guān)于軸對稱, 則的最小正值是________. 【

26、答案】 【解析】由題意,將其圖象向右平移個單位,得 ,要使圖象關(guān)于軸對稱,則,解得,當(dāng)時,取最小正值. 【考點定位】三角函數(shù)的平移、三角函數(shù)恒等變換與圖象性質(zhì). 8. 【2014浙江高考理第4題】為了得到函數(shù)的圖像,可以將函數(shù)的圖像( ) A. 向右平移個單位 B.向左平移個單位 C.向右平移個單位 D.向左平移個單位 【答案】D 【解析】,故只需將向左平移個單位. 【考點定位】三角函數(shù)化簡,圖像平移. 9. 【2014陜西高考理第2題】函數(shù)的最小正周期是( ) 【答案】 【解析】由周期公式,

27、又,所以函數(shù)的周期,故選. 【考點定位】三角函數(shù)的最小正周期. 10. 【2014大綱高考理第16題】若函數(shù)在區(qū)間是減函數(shù),則的取值范圍是 . 【答案】. 【考點定位】三角函數(shù)的單調(diào)性 11. 【2014高考江西理第16題】已知函數(shù),其中 (1)當(dāng)時,求在區(qū)間上的最大值與最小值; (2)若,求的值. 【答案】(1)最大值為最小值為-1. (2) 【解析】(1)當(dāng)時, 因為,從而 故在上的最大值為最小值為-1. (2)由得,又知解得 【考點定位】三角函數(shù)性質(zhì)。 12. (2014·福建卷)已知函數(shù)f(x)=2cos x(sin x+cos x

28、). (1)求f的值; (2)求函數(shù)f (x)的最小正周期及單調(diào)遞增區(qū)間. 思路二 先應(yīng)用和差倍半的三角函數(shù)公式化簡函數(shù)f(x)=2sin xcos x+2cos2x=sin+1. (1)將代入函數(shù)式計算; (2)T==π. 由2kπ-≤2x+≤2kπ+,k∈Z, 解得kπ-≤x≤kπ+,k∈Z. 解析:解法一 (1)f=2cos =-2cos =2. (2)因為f(x)=2sin xcos x+2cos2x =sin 2x+cos 2x+1 =sin+1. 所以T==π. 由2kπ-≤2x+≤2kπ+,k∈Z, 得kπ-≤x≤kπ+,k∈Z, 所以f

29、(x)的單調(diào)遞增區(qū)間為,k∈Z. 13. (2014·北京卷)函數(shù)f(x)=3sin的部分圖象如圖所示. (1)寫出f(x)的最小正周期及圖中x0、y0的值; (2)求f(x)在區(qū)間上的最大值和最小值. 解析:(1)由題意知:f(x)的最小正周期為π,x0=,y0=3. (2)因為x∈,所以2x+∈,于是 當(dāng)2x+=0,即x=-時,f(x)取得最大值0; 當(dāng)2x+=-,即x=-時,f(x)取得最小值-3. 1.函數(shù)f(x)=sin(ωx+φ)的圖象如圖所示,為了得到y(tǒng)=sin ωx的圖象,只需把y=f(x)的圖象上所有點(  ) A.向右平移個單位長度

30、B.向右平移個單位長度 C.向左平移個單位長度 D.向左平移個單位長度 答案:A 2.若函數(shù)y=cos(ω∈N*)圖象的一個對稱中心是,則ω的最小值為(  ) A.1 B.2 C.4 D.8 解析:由題意知+=kπ+(k∈Z)?ω=6k+2(k∈Z),又ω∈N*,∴ωmin=2,故選B. 答案:B 3.若函數(shù)f(x)=sin ax+cos ax(a>0)的最小正周期為2,則函數(shù)f(x)的一個零點為(  ) A.-      B. C. D.(0,0) 答案:B 4.把函數(shù)y=sin圖象上各點的橫坐標(biāo)縮小到原來的(

31、縱坐標(biāo)不變),再將圖象向右平移個單位,那么所得圖象的一條對稱軸方程為(  ) A.x=- B. x=- C.x= D.x= 解析:由題意知y=sin=sin=-cos 2x,驗證可知x=-是所得圖象的一條對稱軸. 答案:A 5.已知函數(shù)f(x)=2sin(ωx+φ)的圖象如圖所示,則函數(shù)y=f(x)+ω的圖象的對稱中心坐標(biāo)為(  ) A.(k∈Z) B.(k∈Z) C.(k∈Z) D.(k∈Z) 解析:由題圖可知=-=π,∴T=3π,又T==3π,∴ω=,又×+φ=2kπ+,k∈Z, ∴φ=2kπ+,k∈Z,又∵|φ|<,∴φ=,∴f(x)=2sin,由x+

32、=kπ,k∈Z,得x=kπ-,k∈Z,則y=f(x)+ω的圖象的對稱中心坐標(biāo)為(k∈Z). 答案:D 6.已知函數(shù)f(x)=sincos-sin2. (1)求f(x)的最小正周期; (2)求f(x)在區(qū)間[-π,0]上的最小值. 7.某同學(xué)用“五點法”畫函數(shù)f (x)=Asin(ωx+φ)在某一個周期內(nèi)的圖象時,列表并填入部分?jǐn)?shù)據(jù),如下表: ωx+φ 0 π 2π x Asin(ωx+φ) 0 5 -5 0 (1)請將上表數(shù)據(jù)補充完整,填寫在相應(yīng)位置,并直接寫出函數(shù)f(x)的解析式; (2)將y=f(x)圖象上所有點向左

33、平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個對稱中心為,求θ的最小值. 解:(1)根據(jù)表中已知數(shù)據(jù),解得A=5,ω=2,φ=-.數(shù)據(jù)補全如下表: ωx+φ 0 π 2π x Asin(ωx+φ) 0 5 0 -5 0 且函數(shù)表達(dá)式為f(x)=5sin. 8.設(shè)函數(shù)f(x)=sin ωx+sin,x∈R. (1)若ω=,求f(x)的最大值及相應(yīng)x的集合; (2)若x=是f(x)的一個零點,且0<ω<10,求ω的值和f(x)的最小正周期. 解:由已知:f(x)=sin ωx-cos ωx=sin. (1)若ω=,則f(x)=sin. 又x∈R,則sin≤, ∴f(x)max=, 此時x-=2kπ+,k∈Z, 即f(x)取最大值時, x的取值集合為. 此時其最小正周期為π. 31

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!