2019高考數(shù)學(xué) 突破三角函數(shù)與解三角形問(wèn)題中的套路 專(zhuān)題05 三角函數(shù)與解三角形的綜合應(yīng)用學(xué)案 理
《2019高考數(shù)學(xué) 突破三角函數(shù)與解三角形問(wèn)題中的套路 專(zhuān)題05 三角函數(shù)與解三角形的綜合應(yīng)用學(xué)案 理》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019高考數(shù)學(xué) 突破三角函數(shù)與解三角形問(wèn)題中的套路 專(zhuān)題05 三角函數(shù)與解三角形的綜合應(yīng)用學(xué)案 理(21頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 專(zhuān)題05 三角函數(shù)與解三角形的綜合應(yīng)用 知識(shí)必備 一、三角函數(shù)、解三角形、三角恒等變換的綜合及其應(yīng)用 1.三角函數(shù)的綜合應(yīng)用 (1)函數(shù),的定義域均為;函數(shù)的定義域均為. (2)函數(shù),的最大值為,最小值為;函數(shù)的值域?yàn)? (3)函數(shù),的最小正周期為;函數(shù)的最小正周期為. (4)對(duì)于,當(dāng)且僅當(dāng)時(shí)為奇函數(shù),當(dāng)且僅當(dāng)時(shí)為偶函數(shù);對(duì)于,當(dāng)且僅當(dāng)時(shí)為奇函數(shù),當(dāng)且僅當(dāng)時(shí)為偶函數(shù);對(duì)于,當(dāng)且僅當(dāng)時(shí)為奇函數(shù). (5)函數(shù)的單調(diào)遞增區(qū)間由不等式 來(lái)確定,單調(diào)遞減區(qū)間由不等式來(lái)確定;函數(shù)的單調(diào)遞增區(qū)間由不等式來(lái)確定,單調(diào)遞減區(qū)間由不等式來(lái)確定;函數(shù)的單調(diào)遞增區(qū)間由不等式來(lái)確定. 【注】
2、函數(shù),,(有可能為負(fù)數(shù))的單調(diào)區(qū)間:先利用誘導(dǎo)公式把化為正數(shù)后再求解. (6)函數(shù)圖象的對(duì)稱(chēng)軸為,對(duì)稱(chēng)中心為;函數(shù)圖象的對(duì)稱(chēng)軸為,對(duì)稱(chēng)中心為;函數(shù)圖象的對(duì)稱(chēng)中心為. 【注】函數(shù),的圖象與軸的交點(diǎn)都為對(duì)稱(chēng)中心,過(guò)最高點(diǎn)或最低點(diǎn)且垂直于軸的直線(xiàn)都為對(duì)稱(chēng)軸. 函數(shù)的圖象與軸的交點(diǎn)和漸近線(xiàn)與軸的交點(diǎn)都為對(duì)稱(chēng)中心,無(wú)對(duì)稱(chēng)軸. 2.三角恒等變換與三角函數(shù)的圖象及性質(zhì)相結(jié)合的綜合問(wèn)題 (1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式轉(zhuǎn)化成y=Asin(ωx+φ)+t或y=Acos(ωx+φ)+t的形式. (2)利用公式求周期. (3)根據(jù)自變量的范圍確定ωx+φ的范圍,根據(jù)相應(yīng)的正弦曲線(xiàn)或余弦
3、曲線(xiàn)求值域或最值,另外求最值時(shí),根據(jù)所給關(guān)系式的特點(diǎn),也可換元轉(zhuǎn)化為二次函數(shù)的最值. (4)根據(jù)正、余弦函數(shù)的單調(diào)區(qū)間列不等式求函數(shù)y=Asin(ωx+φ)+t或y=Acos(ωx+φ)+t的單調(diào)區(qū)間. 3.三角恒等變換與向量相結(jié)合的綜合問(wèn)題 三角恒等變換與向量的綜合問(wèn)題是高考經(jīng)常出現(xiàn)的問(wèn)題,一般以向量的坐標(biāo)形式給出與三角函數(shù)有關(guān)的條件,并結(jié)合簡(jiǎn)單的向量運(yùn)算,往往是兩向量平行或垂直的計(jì)算,即令a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2,a∥b?x1y2=x2y1,a⊥b?x1x2+y1y2=0,把向量形式化為坐標(biāo)運(yùn)算后,接下來(lái)的運(yùn)算仍然是三角函數(shù)的恒等變換以及三
4、角函數(shù)、解三角形等知識(shí)的運(yùn)用. 4.三角恒等變換與解三角形相結(jié)合的綜合問(wèn)題 (1)利用正弦定理把邊的關(guān)系化成角,因?yàn)槿齻€(gè)角之和等于π,可以根據(jù)此關(guān)系把未知量減少,再用三角恒等變換化簡(jiǎn)求解; (2)利用正、余弦定理把邊的關(guān)系化成角的關(guān)系再用三角恒等變換化簡(jiǎn)求解. 【注】此類(lèi)題中的角是在三角形中,每個(gè)角范圍限制在(0,π)內(nèi),如果是銳角三角形,則需要限制各個(gè)角均在內(nèi).角的范圍在解題中至關(guān)重要,做題時(shí)要特別注意. 5.三角形中的綜合問(wèn)題 (1)解三角形的應(yīng)用中要注意與基本不等式的結(jié)合,以此考查三角形中有關(guān)邊、角的范圍問(wèn)題.利用正弦定理、余弦定理與三角形的面積公式,建立如“”之間的等量關(guān)系
5、與不等關(guān)系,通過(guò)基本不等式考查相關(guān)范圍問(wèn)題. (2)注意與三角函數(shù)的圖象與性質(zhì)的綜合考查,將兩者結(jié)合起來(lái),既考查解三角形問(wèn)題,也注重對(duì)三角函數(shù)的化簡(jiǎn)、計(jì)算及考查相關(guān)性質(zhì)等. (3)正、余弦定理也可能結(jié)合平面向量及不等式考查面積的最值或求面積,此時(shí)注意應(yīng)用平面向量的數(shù)量積或基本不等式進(jìn)行求解. 6.三角函數(shù)圖象、性質(zhì)與其他知識(shí)的綜合問(wèn)題 常先通過(guò)三角恒等變換、平面向量的有關(guān)知識(shí)化簡(jiǎn)函數(shù)解析式為y=Asin(ωx+φ)+B的形式,再結(jié)合正弦函數(shù)y=sinx的性質(zhì)研究其相關(guān)性質(zhì),若涉及解三角形,則結(jié)合解三角形的相關(guān)知識(shí)求解. 二、解三角形的實(shí)際應(yīng)用 1.測(cè)量中的術(shù)語(yǔ) (1)仰角和俯角
6、 在視線(xiàn)和水平線(xiàn)所成的角中,視線(xiàn)在水平線(xiàn)上方的角叫仰角,在水平線(xiàn)下方的角叫俯角(如圖①). (2)方位角 從指北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線(xiàn)的水平角,如B點(diǎn)的方位角為α(如圖②). (3)方向角 相對(duì)于某一正方向的水平角. ①北偏東α,即由指北方向順時(shí)針旋轉(zhuǎn)α到達(dá)目標(biāo)方向(如圖③); ②北偏西α,即由指北方向逆時(shí)針旋轉(zhuǎn)α到達(dá)目標(biāo)方向; ③南偏西等其他方向角類(lèi)似. (4)坡角與坡度 ①坡角:坡面與水平面所成的二面角的度數(shù)(如圖④,角θ為坡角); ②坡度:坡面的鉛直高度與水平長(zhǎng)度之比(如圖④,i為坡度).坡度又稱(chēng)為坡比. 2.解三角形實(shí)際應(yīng)用題的步驟 核心考點(diǎn) 考
7、點(diǎn)一 三角函數(shù)、解三角形、三角恒等變換的綜合及其應(yīng)用 【例1】(三種三角函數(shù)間的綜合)已知函數(shù)和函數(shù)在區(qū)間上的圖象交于,,三點(diǎn),則△的面積是 A. B. C. D. 【答案】C 【例2】(三角函數(shù)性質(zhì)的綜合)已知函數(shù)的最小正周期為,的圖象向左平移個(gè)單位后所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),則的最大值為 A. B. C.1 D.2 【答案】A 【解析】因?yàn)楹瘮?shù)的最小正周期為,所以,且其圖象向左平移個(gè)單位后得到的為偶函數(shù),則,又因?yàn)?,所以,,則.故選A. 【例3】(三角函數(shù)型圖
8、象問(wèn)題)函數(shù)的圖象大致為 A. B. C. D. 【答案】C 【解析】為偶函數(shù),則圖象關(guān)于軸對(duì)稱(chēng),排除A、D,把代入得,故圖象過(guò)點(diǎn),C選項(xiàng)適合,故選C. 【例4】(三角函數(shù)與平面幾何的綜合)已知函數(shù). (1)若,把函數(shù)的圖象的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍,縱坐標(biāo)不變,再向右平移個(gè)單位后得到函數(shù)的圖象,求在區(qū)間上的值域; (2)若函數(shù)的圖象上有如圖所示的三點(diǎn),且滿(mǎn)足,求的值. 【解析】. (2)由圖知點(diǎn)是函數(shù)圖象的最高點(diǎn),設(shè),函數(shù)的最小正周期為, 則,所以,, 因?yàn)椋? 所以,解得, 故. 【例5】(三角函數(shù)與解三角形的綜合)已知. (
9、1)求函數(shù)的單調(diào)遞增區(qū)間; (2)中,角的對(duì)邊分別為,若,且,的面積,求. 【解析】(1) . 由(),解得(). 故函數(shù)的單調(diào)遞增區(qū)間為(). (2)由,即,得. 所以(),解得(). 因?yàn)?,所? 由已知的面積,解得. 由余弦定理可得. 所以. 【例6】(三角恒等變換與解三角形的綜合)已知中,分別為角所對(duì)的邊,且,,,則的面積為 A. B. C. D. 【答案】C 【名師點(diǎn)睛】本題主要考查兩角和的正切公式的變形和應(yīng)用,考查利用余弦定理解三角形,考查三角
10、形面積的求法.本題主要條件是,這是兩角和的正切公式的變形,由此可得到的弧度數(shù),再利用余弦定理聯(lián)立,可求得各邊的長(zhǎng)度,進(jìn)而求得面積的值. 考點(diǎn)二 三角與其他問(wèn)題的綜合 【例7】(解三角形與向量的綜合)已知在中,角的對(duì)邊分別為,向量,,且. (1)求角的大?。? (2)若,求的面積. 【解析】(1)由已知得, 由倍角公式和降冪公式得. . (2)由余弦定理得. 解得或. 當(dāng)時(shí),; 當(dāng)時(shí),. 綜上所述,或. 備考指南 三角形的正弦定理與余弦定理在教材中是利用向量知識(shí)來(lái)推導(dǎo)的,說(shuō)明正弦定理、余這定理與向量有著密切的聯(lián)系,解三角形與向量的綜合主要體現(xiàn)為以三角形的角對(duì)應(yīng)
11、的三角函數(shù)值為向量的坐標(biāo),要求根據(jù)向量的關(guān)系解答相關(guān)的問(wèn)題. 【例8】(三角函數(shù)與向量、函數(shù)與方程的綜合)已知向量,設(shè)函數(shù). (1)若函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),且時(shí),求函數(shù)的單調(diào)增區(qū)間; (2)在(1)的條件下,當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍. 【解析】 . (2)由(1)知, ∵,∴, ∴,即時(shí),函數(shù)單調(diào)遞增; ,即時(shí),函數(shù)單調(diào)遞減. 又, ∴當(dāng)或時(shí)有且只有一個(gè)零點(diǎn). 即或, 所以滿(mǎn)足條件的. 備考指南 (1)在解決已知三角函數(shù)的圖象關(guān)于某條直線(xiàn)(或某點(diǎn))對(duì)稱(chēng)的問(wèn)題時(shí),常用的解決方法是將橫坐標(biāo)代入原式中,讓其等于正弦函數(shù)的對(duì)稱(chēng)軸(或?qū)ΨQ(chēng)中
12、心),即(或),,再解出參數(shù)即可; (2)在解決已知函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù),或者討論函數(shù)的零點(diǎn)個(gè)數(shù)問(wèn)題時(shí),常用分離參數(shù)的方法,將問(wèn)題轉(zhuǎn)化為,畫(huà)出的圖象,通過(guò)對(duì)直線(xiàn)進(jìn)行上下平移,從而得到參數(shù)的取值范圍或零點(diǎn)個(gè)數(shù)的不同情況. 【例9】(三角函數(shù)與導(dǎo)數(shù)的綜合)已知函數(shù)對(duì)任意的滿(mǎn)足(其中是函數(shù)的導(dǎo)函數(shù)),則下列不等式成立的是 A. B. C. D. 【答案】A 【解析】令,由對(duì)任意的滿(mǎn)足可得,所以函數(shù)在上為增函數(shù),所以,即,所以,故選A. 考點(diǎn)三 平面幾何中的解三角形問(wèn)題 【例10】△ABC中,角A,B,C的對(duì)邊分別為a,b,c,. (1)求B的大
13、??; (2)若,且AC邊上的中線(xiàn)長(zhǎng)為,求△ABC的面積. 【解析】(1)由△ABC中可得, 因?yàn)? 所以,即,即, 因?yàn)? 所以,. (2)由得, ,① 在△ABC中, ,取中點(diǎn),連接. 因?yàn)?所以在△CBD中,=, 所以,② 把①代入②,化簡(jiǎn)得,解得,或(舍去), 所以. 所以△ABC的面積. 備考指南 幾何中的長(zhǎng)度、角度的計(jì)算通常轉(zhuǎn)化為三角形中邊長(zhǎng)和角的計(jì)算,這樣就可以利用正、余弦定理解決問(wèn)題.解決此類(lèi)問(wèn)題的關(guān)鍵是構(gòu)造三角形,把已知和所求的量盡量放在同一個(gè)三角形中. 考點(diǎn)四 三角函數(shù)的應(yīng)用問(wèn)題 【例11】(解三角形的應(yīng)用)某觀察站與兩燈塔,的距離
14、分別為米和米,測(cè)得燈塔在觀察站北偏西,燈塔在觀察站北偏東,則兩燈塔,間的距離為 A.米 B.米 C.米 D.米 【答案】C 【解析】依題意,作出示意圖(圖略),因?yàn)?,,,所以由余弦定理可得:,故選C. 【例12】(三角函數(shù)、解三角形的應(yīng)用)如圖,某小區(qū)準(zhǔn)備將閑置的一直角三角形地塊開(kāi)發(fā)成公共綠地,圖中.設(shè)計(jì)時(shí)要求綠地部分(如圖中陰影部分所示)有公共綠地走道,且兩邊是兩個(gè)關(guān)于走道對(duì)稱(chēng)的三角形(和).現(xiàn)考慮綠地最大化原則,要求點(diǎn)與點(diǎn)均不重合,落在邊上且不與端點(diǎn)重合,設(shè). (1)若,求此時(shí)公共綠地的面積; (2)為方便小區(qū)居民的行走,設(shè)計(jì)時(shí)要求的長(zhǎng)度最短,
15、求此時(shí)綠地公共走道的長(zhǎng)度. 【解析】(1)由圖得:, ∴, 又, ∴, ∴, ∴公共綠地的面積. (2)由圖得:且, ∴, 在中,由正弦定理可得:, ∴, 記 , 又, ∴, ∴時(shí),取最大,最短,則此時(shí). 備考指南 解答三角函數(shù)實(shí)際應(yīng)用問(wèn)題的一般步驟 1.閱讀理解材料:三角函數(shù)應(yīng)用題的語(yǔ)言形式多為文字語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言并用.閱讀理解時(shí)要讀懂題目所反映的實(shí)際問(wèn)題的背景,領(lǐng)悟其中的數(shù)學(xué)本質(zhì),把題目中出現(xiàn)的邊角關(guān)系和三角形聯(lián)系起來(lái),確定以什么樣的三角形(直角三角形、斜三角形)為模型,用哪些定理(勾股定理、正弦定理、余弦定理)或邊角關(guān)系,列出等量或不等量關(guān)
16、系 2.建立變量關(guān)系:根據(jù)上面的分析,把實(shí)際問(wèn)題抽象成數(shù)學(xué)習(xí)題,建立變量關(guān)系,這一步一般是通過(guò)解直角三角形或解斜三角形實(shí)現(xiàn)的,要充分運(yùn)用數(shù)形結(jié)合的思想、圖形語(yǔ)言和符號(hào)語(yǔ)言并用的思維方法. 3.討論變量性質(zhì):根據(jù)(2)中建立的變量關(guān)系,結(jié)合題目的要求,與學(xué)過(guò)的數(shù)學(xué)模型的性質(zhì)對(duì)照,討論變量的有關(guān)性質(zhì),從而得到所求問(wèn)題的理論值. 4.作出結(jié)論:根據(jù)(3)中得到的理論值,按題目要求作出相應(yīng)的結(jié)論. 能力突破 1.已知命題:函數(shù)圖象的一條對(duì)稱(chēng)軸是;命題,則下列命題中的真命題為 A. B. C. D. 【答案】B
17、 2.已知函數(shù)(且)和函數(shù),若與兩圖象只有3個(gè)交點(diǎn),則的取值范圍是 A. B. C. D. 【答案】D 【解析】作出函數(shù)與的圖象如圖所示,當(dāng)時(shí),與兩圖象只有3個(gè)交點(diǎn),可得, 當(dāng)時(shí),與兩圖象只有3個(gè)交點(diǎn),可得,所以的取值范圍是,故選D. 3.存在實(shí)數(shù),使得圓面恰好覆蓋函數(shù)圖象的最高點(diǎn)或最低點(diǎn)共三個(gè),則正數(shù)的取值范圍是___________. 【答案】 【解析】由題意,知函數(shù)圖象的最高點(diǎn)或最低一定在直線(xiàn)上,則由,得.又由題意,得,,解得正數(shù)的取值范圍為. 4.在△ABC中,角A, B, C所對(duì)的邊分別為a, b, c,已知,. (1)求
18、的值; (2)設(shè)D為AC的中點(diǎn),若BD的長(zhǎng)為,求△ABC的面積. 【解析】(1)由得, 即, 故, 從而,與都是銳角, 則. ,即. (2)由(1),得, 設(shè), 在中,由余弦定理得,解得, 則. 5.已知函數(shù)的部分圖象如圖所示. (1)求函數(shù)的解析式,并寫(xiě)出的最小正周期; (2)令,若在內(nèi),方程有且僅有兩解,求的取值范圍. 【解析】(1)由圖象可知:,∴, 又, ∴. 又∵點(diǎn)在圖象上, ∴, ∴, ∴,, 又∵, ∴. ∴, 最小正周期. (2)∵, ∴原方程可化為,則. ∵, ∴,, ∴, 令,則,作出及的圖象,
19、 當(dāng)或時(shí),兩圖象在內(nèi)有且僅有一解,即方程在內(nèi)有且僅有兩解, 此時(shí)的取值范圍為. 高考通關(guān) 1.(2018新課標(biāo)Ⅲ理)函數(shù)在的零點(diǎn)個(gè)數(shù)為_(kāi)_______. 【答案】 【解析】,,由題可知,或,解得,或,故有3個(gè)零點(diǎn). 2.(2017浙江)已知△ABC,AB=AC=4,BC=2.?點(diǎn)D為AB延長(zhǎng)線(xiàn)上一點(diǎn),BD=2,連結(jié)CD,則△BDC的面積是______,cos∠BDC=_______. 【答案】 【解析】取BC中點(diǎn)E,由題意:,△ABE中,, ∴, ∴. ∵, ∴,解得或(舍去). 綜上可得,△BCD的面積為,. 3.(2017江蘇)已知向量 (1)若a∥b,求的值
20、; (2)記,求的最大值和最小值以及對(duì)應(yīng)的的值. 【解析】(1)因?yàn)椋?,a∥b, 所以. 若,則,與矛盾,故. 于是. 又, 所以. 4.(2018新課標(biāo)Ⅰ理)在平面四邊形中,,,,. (1)求; (2)若,求. 【解析】(1)在中,由正弦定理得. 由題設(shè)知,,所以. 由題設(shè)知,,所以. (2)由題設(shè)及(1)知,. 在中,由余弦定理得 . 所以. 5.(2018北京理)在△ABC中,a=7,b=8,cosB=–. (1)求∠A; (2)求AC邊上的高. 【解析】(1)在△ABC中,∵cosB=–,∴B∈(,π), ∴sinB=. 由正弦定
21、理得=,∴sinA=. ∵B∈(,π),∴A∈(0,),∴∠A=. (2)在△ABC中,sinC=sin(A+B)=sinAcosB+sinBcosA==. 如圖所示,在△ABC中,∵sinC=,∴h==, ∴AC邊上的高為. 你都掌握了嗎? 有哪些問(wèn)題?整理一下!
22、
23、
24、
25、 21
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024《增值稅法》全文學(xué)習(xí)解讀(規(guī)范增值稅的征收和繳納保護(hù)納稅人的合法權(quán)益)
- 2024《文物保護(hù)法》全文解讀學(xué)習(xí)(加強(qiáng)對(duì)文物的保護(hù)促進(jìn)科學(xué)研究工作)
- 銷(xiāo)售技巧培訓(xùn)課件:接近客戶(hù)的套路總結(jié)
- 20種成交的銷(xiāo)售話(huà)術(shù)和技巧
- 銷(xiāo)售技巧:接近客戶(hù)的8種套路
- 銷(xiāo)售套路總結(jié)
- 房產(chǎn)銷(xiāo)售中的常見(jiàn)問(wèn)題及解決方法
- 銷(xiāo)售技巧:值得默念的成交話(huà)術(shù)
- 銷(xiāo)售資料:讓人舒服的35種說(shuō)話(huà)方式
- 汽車(chē)銷(xiāo)售績(jī)效管理規(guī)范
- 銷(xiāo)售技巧培訓(xùn)課件:絕對(duì)成交的銷(xiāo)售話(huà)術(shù)
- 頂尖銷(xiāo)售技巧總結(jié)
- 銷(xiāo)售技巧:電話(huà)營(yíng)銷(xiāo)十大定律
- 銷(xiāo)售逼單最好的二十三種技巧
- 銷(xiāo)售最常遇到的10大麻煩