2022年高三數(shù)學(xué)總復(fù)習(xí) 四種命題教案 理

上傳人:xt****7 文檔編號(hào):105046405 上傳時(shí)間:2022-06-11 格式:DOC 頁數(shù):5 大?。?1.52KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高三數(shù)學(xué)總復(fù)習(xí) 四種命題教案 理_第1頁
第1頁 / 共5頁
2022年高三數(shù)學(xué)總復(fù)習(xí) 四種命題教案 理_第2頁
第2頁 / 共5頁
2022年高三數(shù)學(xué)總復(fù)習(xí) 四種命題教案 理_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學(xué)總復(fù)習(xí) 四種命題教案 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)總復(fù)習(xí) 四種命題教案 理(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高三數(shù)學(xué)總復(fù)習(xí) 四種命題教案 理 教材分析 在初中,學(xué)生接觸的簡單的邏輯推理及命題間關(guān)系(原命題和逆命題)主要來源于幾何知識(shí),有很強(qiáng)的幾何直觀性,便于掌握.高中學(xué)生要面對(duì)大量代數(shù)命題,因此,很有必要學(xué)習(xí)四種命題及四者之間的關(guān)系,以適應(yīng)高中數(shù)學(xué)學(xué)習(xí)的需要,這節(jié)課的主要教學(xué)目的就在于此.同時(shí),這節(jié)課又是學(xué)習(xí)和運(yùn)用反證法這種基本解題方法的基礎(chǔ). 這節(jié)課的重點(diǎn)是四種命題間的關(guān)系. 學(xué)生現(xiàn)有的認(rèn)知水平雖然脫離了初中階段的簡單幾何知識(shí),但是新的知識(shí)體系并未形成,因此,隨著學(xué)生對(duì)概念理解的深入,這節(jié)課的例題將逐步引導(dǎo)學(xué)生理解幾何命題,進(jìn)而理解代數(shù)命題.這種處理方式符合學(xué)生的認(rèn)知規(guī)律. 教

2、學(xué)目標(biāo) 通過這節(jié)課的教與學(xué),應(yīng)使學(xué)生初步理解四種命題及其關(guān)系,進(jìn)而使學(xué)生掌握簡單的推理技能,發(fā)展學(xué)生的思維能力.同時(shí),幫助學(xué)生從幾何推理向代數(shù)推理過渡. 任務(wù)分析 在這節(jié)課的教學(xué)過程中,要注意控制教學(xué)要求,即只研究比較簡單的命題,而且命題的條件和結(jié)論比較明顯;不研究含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題. 這節(jié)中“若p則q”形式的命題中的“p”,“q”可以都是命題,也可以不都是命題,不能等同于前面的復(fù)合命題. 教學(xué)設(shè)計(jì) 一、問題情境 在以前的數(shù)學(xué)學(xué)習(xí)中,有這樣的知識(shí):菱形的對(duì)角線相互垂直.那么,這一真命題變一下形式是否真命題呢?如:“如果一個(gè)四邊形對(duì)

3、角線相互垂直,那么它是菱形”,再如:“對(duì)角線不相互垂直的四邊形不是菱形”.這些變形后的命題的真假是否和原命題有關(guān)呢?為解決這一問題,這節(jié)課我們就來學(xué)習(xí)“四種命題”. 二、問題解決 首先讓學(xué)生回憶初中學(xué)習(xí)過的有關(guān)命題的定義:互逆命題、原命題、逆命題.(學(xué)生回答,教師補(bǔ)充完整) 例:如果原命題是 (1)同位角相等,兩直線平行. 讓學(xué)生說出它的逆命題. (2)兩直線平行,同位角相等. 再看下面的兩個(gè)命題: (3)同位角不相等,兩直線不平行. (4)兩直線不平行,同位角不相等. 在命題(1)與命題(3)中,一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的條件的否定和結(jié)論的否定,這樣的兩個(gè)命題

4、叫作互否命題.把其中一個(gè)命題叫作原命題,另一個(gè)就叫作原命題的否命題. 在命題(1)與命題(4)中,一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論的否定和條件的否定,這樣的兩個(gè)命題叫作互為逆否命題.把其中一個(gè)命題叫作原命題,另一個(gè)就叫作原命題的逆否命題. 換句話說: (1)交換原命題的條件和結(jié)論,所得的命題是逆命題. (2)同時(shí)否定原命題的條件和結(jié)論,所得命題是否命題. (3)交換原命題的條件和結(jié)論,并同時(shí)否定,所得命題是逆否命題. 一般地,用p和q分別表示原命題的條件和結(jié)論,用非p和非q分別表示p和q的否定.于是,四種命題的形式就是: 原命題:若p則q. 逆命題:若q則p. 否命

5、題:若非p則非q. 逆否命題:若非q而非p. 下面讓學(xué)生考慮這樣一個(gè)問題:四種命題之間,任意兩個(gè)是什么關(guān)系?(學(xué)生回答,教師補(bǔ)充,最后出示下圖) 給出一個(gè)命題:“若a=0,則ab=0.”讓學(xué)生寫出其他三種命題,并判斷四個(gè)命題的真假,然后考慮其他三種命題的真假是否與原命題的真假有某種關(guān)系. 不難發(fā)現(xiàn)如下關(guān)系: (1)原命題為真,它的逆命題不一定為真. (2)原命題為真,它的否命題不一定為真. (3)原命題為真,它的逆否命題一定為真. 三、解釋應(yīng)用 [例 題] 1. 把下列命題先改寫成“若p則q”的形式,再寫出它們的逆命題、否命題與逆否命題,并分別判斷它們的真假. (1)

6、負(fù)數(shù)的平方是正數(shù). (2)正方形的四條邊相等. 分析:關(guān)鍵是找出原命題的條件p與結(jié)論q. 解:(1)原命題可以寫成:若一個(gè)數(shù)是負(fù)數(shù),則它的平方是正數(shù). 逆命題:若一個(gè)數(shù)的平方是正數(shù),則它是負(fù)數(shù).逆命題為假. 否命題:若一個(gè)數(shù)不是負(fù)數(shù),則它的平方不是正數(shù).否命題為假. 逆否命題:若一個(gè)數(shù)的平方不是正數(shù),則它不是負(fù)數(shù).逆否命題為真. (2)原命題可以寫成:若一個(gè)四邊形是正方形,則它的四條邊相等. 逆命題:若一個(gè)四邊形的四條邊相等,則它是正方形.逆命題為假. 否命題:若一個(gè)四邊形不是正方形,則它的四條邊不相等.否命題為假. 逆否命題:若一個(gè)四邊形的四條邊不相等,則它不是正方形.逆

7、否命題為真. 2. 設(shè)原命題是“當(dāng)c>0時(shí),若a>b,則ac>bc”,寫出它的逆命題、否命題與逆否命題,并分別判斷它們的真假. 分析:“當(dāng)c>0時(shí)”是大前提,寫其他命題時(shí)應(yīng)該保留,原命題的條件是a>b,結(jié)論是ac>bc. 解:逆命題:當(dāng)c>0時(shí),若ac>bc,則a>b.逆命題為真.否命題:當(dāng)c>0時(shí),若a≤b,則ac≤bc.否命題為真.逆否命題:當(dāng)c>0時(shí),若ac≤bc,則a≤b.逆否命題為真. [練 習(xí)] 1. 命題“若a>b,則ac2>bc2,(a,b,c∈R)”與它的逆命題、否命題、逆否命題中,真命題個(gè)數(shù)為( ?。? A. 3      B. 2      C. 1     

8、D. 0 (B) 2. 在命題“若拋物線y=ax2+bx+c的開口向下,則{x|ax2+bx+c<0}≠”的逆命題、否命題、逆否命題中,下列結(jié)論成立的是( ?。? A. 三命題都真 B. 三命題都假 C. 否命題真 D. 逆否命題真 (D) 四、拓展延伸 在對(duì)某一命題的條件和結(jié)論否定時(shí),有些問題,學(xué)生易出錯(cuò).例如,對(duì)如下詞語的否定:“任意的”、“所有的”、“都是”和“全是”等. 下面以“全是”為例進(jìn)行說明:所謂“否定”,即其對(duì)立面,顯然“全是”的對(duì)立面中除了“全不是”之外,還有“部分也是”這一部分.因此,“全是”的對(duì)立面(即否定)應(yīng)是“不全是”,而不是“全不是”.同樣,“任意

9、的”否定應(yīng)是“某個(gè)”,“所有的”否定應(yīng)是“存在一個(gè)”或“存在一些”,“都是”的否定是“不都是”.例如,命題:若x2+y2=0,則x,y全是0.其否命題是:若x2+y2≠0,則x,y不全是0. 點(diǎn) 評(píng) 這篇案例涉及兩個(gè)問題:一個(gè)是定義,一個(gè)是規(guī)律,即四種命題間的關(guān)系.為了加深學(xué)生的認(rèn)識(shí),這篇案例突出了“學(xué)生參與”,即讓學(xué)生通過例子認(rèn)識(shí)定義,在活動(dòng)中自己歸納、總結(jié)規(guī)律.同時(shí),這篇案例又設(shè)計(jì)了適量的例題和練習(xí),以鞏固學(xué)生在課堂活動(dòng)中掌握的知識(shí).再者,這篇案例中所有例子都十分簡單,但又極具有代表性,易于學(xué)生接受和理解,這也是學(xué)生能積極地參與到課堂活動(dòng)中去的一個(gè)必要條件. 美中不足的是,這篇案例的個(gè)別環(huán)節(jié)對(duì)“反例”的運(yùn)用稍顯單?。?

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!