2022年高中數(shù)學 2-1-12-1-2 曲線與方程、求曲線的軌跡方程 活頁規(guī)范訓練 新人教A版選修2-1

上傳人:xt****7 文檔編號:105214132 上傳時間:2022-06-11 格式:DOC 頁數(shù):8 大小:81.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高中數(shù)學 2-1-12-1-2 曲線與方程、求曲線的軌跡方程 活頁規(guī)范訓練 新人教A版選修2-1_第1頁
第1頁 / 共8頁
2022年高中數(shù)學 2-1-12-1-2 曲線與方程、求曲線的軌跡方程 活頁規(guī)范訓練 新人教A版選修2-1_第2頁
第2頁 / 共8頁
2022年高中數(shù)學 2-1-12-1-2 曲線與方程、求曲線的軌跡方程 活頁規(guī)范訓練 新人教A版選修2-1_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高中數(shù)學 2-1-12-1-2 曲線與方程、求曲線的軌跡方程 活頁規(guī)范訓練 新人教A版選修2-1》由會員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學 2-1-12-1-2 曲線與方程、求曲線的軌跡方程 活頁規(guī)范訓練 新人教A版選修2-1(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高中數(shù)學 2-1-1,2-1-2 曲線與方程、求曲線的軌跡方程 活頁規(guī)范訓練 新人教A版選修2-1 一、教學目標 (一)知識教學點 使學生掌握常用動點的軌跡以及求動點軌跡方程的常用技巧與方法.(二)能力訓練點 通過對求軌跡方程的常用技巧與方法的歸納和介紹,培養(yǎng)學生綜合運用各方面知識的能力. (三)學科滲透點 通過對求軌跡方程的常用技巧與方法的介紹,使學生掌握常用動點的軌跡,為學習物理等學科打下扎實的基礎(chǔ). 二、教材分析 1.重點:求動點的軌跡方程的常用技巧與方法. (解決辦法:對每種方法用例題加以說明,使學生掌握這種方法.)2.難點:作相關(guān)點法求動點的軌跡方法.

2、(解決辦法:先使學生了解相關(guān)點法的思路,再用例題進行講解.) 教具準備:與教材內(nèi)容相關(guān)的資料。 教學設(shè)想:激發(fā)學生的學習熱情,激發(fā)學生的求知欲,培養(yǎng)嚴謹?shù)膶W習態(tài)度,培養(yǎng)積極進取的精神. 三、教學過程 學生探究過程: (一)復習引入 大家知道,平面解析幾何研究的主要問題是: (1)根據(jù)已知條件,求出表示平面曲線的方程; (2)通過方程,研究平面曲線的性質(zhì). 我們已經(jīng)對常見曲線圓、橢圓、雙曲線以及拋物線進行過這兩個方面的研究,今天在上面已經(jīng)研究的基礎(chǔ)上來對根據(jù)已知條件求曲線的軌跡方程的常見技巧與方法進行系統(tǒng)分析. (二)幾種常見求軌跡方程的方法 1.直接法 由題設(shè)所給(或通

3、過分析圖形的幾何性質(zhì)而得出)的動點所滿足的幾何條件列出等式,再用坐標代替這等式,化簡得曲線的方程,這種方法叫直接法. 例1(1)求和定圓x2+y2=k2的圓周的距離等于k的動點P的軌跡方程; (2)過點A(a,o)作圓O∶x2+y2=R2(a>R>o)的割線,求割線被圓O截得弦的中點的軌跡. 對(1)分析: 動點P的軌跡是不知道的,不能考查其幾何特征,但是給出了動點P的運動規(guī)律:|OP|=2R或|OP|=0. 解:設(shè)動點P(x,y),則有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求動點P的軌跡方程為x2+y2=4R2或x2+y2=0. 對(2)

4、分析: 題設(shè)中沒有具體給出動點所滿足的幾何條件,但可以通過分析圖形的幾何性質(zhì)而得出,即圓心與弦的中點連線垂直于弦,它們的斜率互為負倒數(shù).由學生演板完成,解答為: 設(shè)弦的中點為M(x,y),連結(jié)OM, 則OM⊥AM. ∵kOM·kAM=-1, 其軌跡是以O(shè)A為直徑的圓在圓O內(nèi)的一段弧(不含端點). 2.定義法 利用所學過的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫出所求的動點的軌跡方程,這種方法叫做定義法.這種方法要求題設(shè)中有定點與定直線及兩定點距離之和或差為定值的條件,或利用平面幾何知識分析得出這些條件. 直平分線l交半徑OQ于點P(見圖2-45),當Q點在

5、圓周上運動時,求點P的軌跡方程. 分析: ∵點P在AQ的垂直平分線上, ∴|PQ|=|PA|. 又P在半徑OQ上. ∴|PO|+|PQ|=R,即|PO|+|PA|=R. 故P點到兩定點距離之和是定值,可用橢圓定義 寫出P點的軌跡方程. 解:連接PA ∵l⊥PQ,∴|PA|=|PQ|. 又P在半徑OQ上. ∴|PO|+|PQ|=2. 由橢圓定義可知:P點軌跡是以O(shè)、A為焦點的橢圓. 3.相關(guān)點法 若動點P(x,y)隨已知曲線上的點Q(x0,y0)的變動而變動,且x0、y0可用x、y表示,則將Q點坐標表達式代入已知曲線方程,即得點P的軌跡方程.這種方法稱為相關(guān)

6、點法(或代換法). 例3  已知拋物線y2=x+1,定點A(3,1)、B為拋物線上任意一點,點P在線段AB上,且有BP∶PA=1∶2,當B點在拋物線上變動時,求點P的軌跡方程. 分析: P點運動的原因是B點在拋物線上運動,因此B可作為相關(guān)點,應(yīng)先找出點P與點B的聯(lián)系. 解:設(shè)點P(x,y),且設(shè)點B(x0,y0) ∵BP∶PA=1∶2,且P為線段AB的內(nèi)分點. 4.待定系數(shù)法 求圓、橢圓、雙曲線以及拋物線的方程常用待定系數(shù)法求. 例4  已知拋物線y2=4x和以坐標軸為對稱軸、實軸在y軸上的雙曲 曲線方程. 分析: 因為雙曲線以坐標軸為對稱軸,實軸在y

7、軸上,所以可設(shè)雙曲線方 ax2-4b2x+a2b2=0 ∵拋物線和雙曲線僅有兩個公共點,根據(jù)它們的對稱性,這兩個點的橫坐標應(yīng)相等,因此方程ax2-4b2x+a2b2=0應(yīng)有等根. ∴△=1664-4Q4b2=0,即a2=2b. (以下由學生完成) 由弦長公式得: 即a2b2=4b2-a2. (三)鞏固練習 用十多分鐘時間作一個小測驗,檢查一下教學效果.練習題用一小黑板給出. 1.△ABC一邊的兩個端點是B(0,6)和C(0,-6),另兩邊斜率的 2.點P與一定點F(2,0)的距離和它到一定直線x=8的距離的比是1∶2,求點P的軌跡方程,并說明軌跡是什

8、么圖形? 3.求拋物線y2=2px(p>0)上各點與焦點連線的中點的軌跡方程. 答案: 義法) 由中點坐標公式得: (四)、教學反思 求曲線的軌跡方程一般地有直接法、定義法、相關(guān)點法、待定系數(shù)法,還有參數(shù)法、復數(shù)法也是求曲線的軌跡方程的常見方法,這等到講了參數(shù)方程、復數(shù)以后再作介紹. 五、布置作業(yè) 1.兩定點的距離為6,點M到這兩個定點的距離的平方和為26,求點M的軌跡方程. 2.動點P到點F1(1,0)的距離比它到F2(3,0)的距離少2,求P點的軌跡. 3.已知圓x2+y2=4上有定點A(2,0),過定點A作弦AB,并延長到點P,使3|AB|=2|AB|,求動點P的軌跡方程.作業(yè)答案: 1.以兩定點A、B所在直線為x軸,線段AB的垂直平分線為y軸建立直角坐標系,得點M的軌跡方程x2+y2=4 2.∵|PF2|-|PF|=2,且|F1F2|∴P點只能在x軸上且x<1,軌跡是一條射線 六、板書設(shè)計

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!