2022年高中數(shù)學(xué) 圓的標(biāo)準(zhǔn)方程教案 新人教A版必修2

上傳人:xt****7 文檔編號(hào):105302249 上傳時(shí)間:2022-06-11 格式:DOC 頁數(shù):6 大?。?9.02KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高中數(shù)學(xué) 圓的標(biāo)準(zhǔn)方程教案 新人教A版必修2_第1頁
第1頁 / 共6頁
2022年高中數(shù)學(xué) 圓的標(biāo)準(zhǔn)方程教案 新人教A版必修2_第2頁
第2頁 / 共6頁
2022年高中數(shù)學(xué) 圓的標(biāo)準(zhǔn)方程教案 新人教A版必修2_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高中數(shù)學(xué) 圓的標(biāo)準(zhǔn)方程教案 新人教A版必修2》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué) 圓的標(biāo)準(zhǔn)方程教案 新人教A版必修2(6頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高中數(shù)學(xué) 圓的標(biāo)準(zhǔn)方程教案 新人教A版必修2   教學(xué)目標(biāo) (一)知識(shí)目標(biāo) 1.掌握?qǐng)A的標(biāo)準(zhǔn)方程:根據(jù)圓心坐標(biāo)、半徑熟練地寫出圓的標(biāo)準(zhǔn)方程,能從圓的標(biāo)準(zhǔn)方程中熟練地求出圓心坐標(biāo)和半徑; 2.理解并掌握切線方程的探求過程和方法。 (二)能力目標(biāo) 1.進(jìn)一步培養(yǎng)學(xué)生用坐標(biāo)法研究幾何問題的能力; 2. 通過教學(xué),使學(xué)生學(xué)習(xí)運(yùn)用觀察、類比、聯(lián)想、猜測(cè)、證明等合情推理方法,提高學(xué)生運(yùn)算能力、邏輯思維能力; 3. 通過運(yùn)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問題的學(xué)習(xí),培養(yǎng)學(xué)生觀察問題、發(fā)現(xiàn)問題及分析、解決問題的能力。 (三)情感目標(biāo) 通過運(yùn)用圓的知識(shí)解決實(shí)際問題的學(xué)習(xí),理解理論來源于實(shí)

2、踐,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,激發(fā)學(xué)生自主探究問題的興趣,同時(shí)培養(yǎng)學(xué)生勇于探索、堅(jiān)忍不拔的意志品質(zhì)。   教學(xué)重、難點(diǎn) (一)教學(xué)重點(diǎn) 圓的標(biāo)準(zhǔn)方程的理解、掌握。 (二)教學(xué)難點(diǎn) 圓的標(biāo)準(zhǔn)方程的應(yīng)用。   教學(xué)方法 選用引導(dǎo)―探究式的教學(xué)方法。   教學(xué)手段 ?? 借助多媒體進(jìn)行輔助教學(xué)。   教學(xué)過程 Ⅰ.復(fù)習(xí)提問、引入課題 師:前面我們學(xué)習(xí)了曲線和方程的關(guān)系及求曲線方程的方法。請(qǐng)同學(xué)們考慮:如何求適合某種條件的點(diǎn)的軌跡? 生:①建立適當(dāng)?shù)闹苯亲鴺?biāo)系,設(shè)曲線上任一點(diǎn)M的坐標(biāo)為(x,y);②寫出適合某種條件p的點(diǎn)M的集合P={M ︳p(M)};③用坐標(biāo)表示條件,列

3、出方程f(x,y)=0;④化簡(jiǎn)方程f(x,y)=0為最簡(jiǎn)形式。⑤證明以化簡(jiǎn)后方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)(一般省略)。[多媒體演示] 師:這就是建系、設(shè)點(diǎn)、列式、化簡(jiǎn)四步曲。用這四步曲我們可以求適合某種條件的任何曲線方程,今天我們來看圓這種曲線的方程。[給出標(biāo)題] 師:前面我們?cè)C明過圓心在原點(diǎn),半徑為5的圓的方程:x2+y2=52 即x2+y2=25. ??? 若半徑發(fā)生變化,圓的方程又是怎樣的?能否寫出圓心在原點(diǎn),半徑為r的圓的方程? 生:x2+y2=r2. 師:你是怎樣得到的?(引導(dǎo)啟發(fā))圓上的點(diǎn)滿足什么條件? 生:圓上的任一點(diǎn)到圓心的距離等于半徑。即 ,亦即 x2+y

4、2=r2. 師:x2+y2=r2 表示的圓的位置比較特殊:圓心在原點(diǎn),半徑為r.有時(shí)圓心不在原點(diǎn),若此圓的圓心移至C(a,b)點(diǎn)(如圖),方程又是怎樣的? 生:此圓是到點(diǎn)C(a,b)的距離等于半徑r的點(diǎn)的集合, 由兩點(diǎn)間的距離公式得??????????????????????????? ??? ?? 即:(x-a)2+(y-b)2= r2 Ⅱ.講授新課、嘗試練習(xí) 師:方程(x-a)2+(y-b)2= r2 叫做圓的標(biāo)準(zhǔn)方程.? ??? 特別:當(dāng)圓心在原點(diǎn),半徑為r時(shí),圓的標(biāo)準(zhǔn)方程為:x2+y2=r2. 師:圓的標(biāo)準(zhǔn)方程由哪些量決定? 生:由圓心坐標(biāo)(a,b)及半徑r

5、決定。 師:很好!實(shí)際上圓心和半徑分別決定圓的位置和大小。由此可見,要確定圓的方程,只需確定a、b、r這三個(gè)獨(dú)立變量即可。 1、???? 寫出下列各圓的標(biāo)準(zhǔn)方程:[多媒體演示] ?? ① 圓心在原點(diǎn),半徑是3?? :________________________ ?? ② 圓心在點(diǎn)C(3,4),半徑是 :______________________ ③ 經(jīng)過點(diǎn)P(5,1),圓心在點(diǎn)C(8,-3):_______________________ 2、? 變式題[多媒體演示] ①???? 求以C(1,3)為圓心,并且和直線3x-4y-7=0相切的圓的方程。 ???? 答案:(x-

6、1)2 + (y-3)2 = ????? ② 已知圓的方程是 (x-a)2 +y2 = a2 ,寫出圓心坐標(biāo)和半徑。?? ?????????? 答案: C(a,0),? r=|a| Ⅲ.例題分析、鞏固應(yīng)用 師:下面我們通過例題來看看圓的標(biāo)準(zhǔn)方程的應(yīng)用. [例1]??????????? 已知圓的方程是 x2+y2=17,求經(jīng)過圓上一點(diǎn)P(,)的切線的方程。 師:你打算怎樣求過P點(diǎn)的切線方程? 生:要求經(jīng)過一點(diǎn)的直線方程,可利用直線的點(diǎn)斜式來求。 師: 斜率怎樣求? 生:。。。。。。 師:已知條件有哪些?能利用嗎?不妨結(jié)合圖形來看看(如圖) 生:切線與過切點(diǎn)的半

7、徑垂直,故斜率互為負(fù)倒數(shù) ? 半徑OP的斜率 K1=, 所以切線的斜率 K=-=- 所以所求切線方程:y-= -(x-) 即:x+y=17?? (教師板書) ??????? 師:對(duì)照?qǐng)A的方程x2+y2=17和經(jīng)過點(diǎn)P(,)的切線方程x+y=17,你能作出怎樣的猜想? 生:。。。。。。 ? 師:由x2+y2=17怎樣寫出切線方程x+y=17,與已知點(diǎn)P(,)有何關(guān)系? (若看不出來,再看一例) [例1/]? 圓的方程是x2+y2=13,求過此圓上一點(diǎn)(2,3)的切線方程。 ???????? 答案:2x+3y=13? 即:2x+3y-13=0 師:發(fā)現(xiàn)規(guī)律了嗎?(學(xué)生紛紛舉手

8、回答) 生:分別用切點(diǎn)的橫坐標(biāo)和縱坐標(biāo)代替圓方程中的一個(gè)x和一個(gè)y,便得到了切線方程。 師:若將已知條件中圓半徑改為r,點(diǎn)改為圓上任一點(diǎn)(xo,yo),則結(jié)論將會(huì)發(fā)生怎樣的變化?大膽地猜一猜! 生:xox+yoy=r2. 師:這個(gè)猜想對(duì)不對(duì)?若對(duì),可否給出證明? 生:。。。。。。 [例2]已知圓的方程是 x2+y2=r2,求經(jīng)過圓上一點(diǎn)P(xo,yo)的切線的方程。 解:如圖(上一頁),因?yàn)榍芯€與過切點(diǎn)的半徑垂直,故半徑OP的斜率與切線的斜率互為負(fù)倒數(shù) ? ∵半徑OP的斜率 K1=,∴切線的斜率 K=-=- ∴所求切線方程:y-yo= - (x-xo) 即:xox+yoy=

9、xo2+yo2?? 亦即:xox+yoy=r2. (教師板書) ? ?? 當(dāng)點(diǎn)P在坐標(biāo)軸上時(shí),可以驗(yàn)證上面方程同樣適用。 歸納總結(jié):圓的方程可看成 x.x+y.y=r2,將其中一個(gè)x、y用切點(diǎn)的坐標(biāo)xo、yo 替換,可得到切線方程 [例3]右圖為某圓拱橋的一孔圓拱的示意圖.該圓拱跨度AB=20M,拱高OP=4M,在建造時(shí)每隔4M需用一個(gè)支柱支撐,求支柱A2P2的長(zhǎng)度。(精確到0.01M) ??????? 引導(dǎo)學(xué)生分析,共同完成解答。 ?? 師生分析:①建系; ②設(shè)圓的標(biāo)準(zhǔn)方程(待定系數(shù));③求系數(shù)(求出圓的標(biāo)準(zhǔn)方程);④利用方程求A2P2的長(zhǎng)度。 ?? 解:以AB所在直線為X

10、軸,O為坐標(biāo)原點(diǎn),建立如圖所示的坐標(biāo)系。則圓心在Y軸上,設(shè)為 (0,b),半徑為r,那么圓的方程是? ?x2+(y-b)2=r2. ∵P(0,4),B(10,0)都在圓上,于是得到方程組: ? 解得:b=-10.5 ,r2=14.52 ∴圓的方程為 x2+(y+10.5)2=14.52. 將P2的橫坐標(biāo)x=-2代入圓的標(biāo)準(zhǔn)方程 且取y>0 得:y= ???? ≈14.36-10.5=3.86 (M) 答:支柱A2P2的長(zhǎng)度約為3.86M。 Ⅳ.課堂練習(xí)、課時(shí)小結(jié) 課本P77練習(xí)2,3 師:通過本節(jié)學(xué)習(xí),要求大家掌握?qǐng)A的標(biāo)準(zhǔn)方程,理解并掌握切線方程的探求過程和方法

11、,能運(yùn)用圓的方程解決實(shí)際問題. Ⅴ.問題延伸、課后作業(yè) (一)若P(xo,yo)在圓(x-a)2+(y-b)2= r2上時(shí),試求過P點(diǎn)的圓的切線方程。 課本P81習(xí)題7.7 : 1,2,3,4 (二)預(yù)習(xí)課本P77~P79 ? 教學(xué)設(shè)計(jì)說明   設(shè)計(jì)思想: 在教學(xué)過程中,教師遵循數(shù)學(xué)發(fā)展規(guī)律,并依據(jù)建構(gòu)主義教育理論,創(chuàng)設(shè)一系列數(shù)學(xué)實(shí)驗(yàn)環(huán)境,在情境中讓學(xué)生觀察、類比、猜想、嘗試、探索、歸納并引導(dǎo)加以證明,強(qiáng)調(diào)主動(dòng)建構(gòu),從深層次加強(qiáng)學(xué)生對(duì)知識(shí)的感知度,使學(xué)生能更好地理解和掌握?qǐng)A的標(biāo)準(zhǔn)方程。   設(shè)計(jì)理念: 設(shè)計(jì)的根本出發(fā)點(diǎn)是促進(jìn)學(xué)生的發(fā)展。教師以合作者的身份參與,課堂上建立平等

12、、互助、融洽的關(guān)系,師生共同研究,共同提高。   設(shè)計(jì)思路: 本節(jié)課的設(shè)計(jì)與教材的呈現(xiàn)方式有所不同,教材只是教學(xué)的藍(lán)本,教師在理解教材編寫意圖的基礎(chǔ)上,應(yīng)發(fā)揮主觀能動(dòng)作用,對(duì)教材資源進(jìn)行再加工、再創(chuàng)造,這樣教學(xué)有利于認(rèn)知結(jié)構(gòu)與知識(shí)結(jié)構(gòu)的有機(jī)結(jié)合,也有利于學(xué)生從深層次理解和掌握?qǐng)A的標(biāo)準(zhǔn)方程。鑒于此,本節(jié)在給出圓的標(biāo)準(zhǔn)方程的過程中,運(yùn)用簡(jiǎn)單、特殊的到復(fù)雜、一般的數(shù)學(xué)思想,使用了觀察、猜測(cè)、經(jīng)驗(yàn)歸納等方法進(jìn)行合情地推理,同時(shí)引導(dǎo)學(xué)生對(duì)照?qǐng)A的幾何形狀,觀察和欣賞圓的方程,體會(huì)數(shù)學(xué)中的美——對(duì)稱、簡(jiǎn)潔。圓的標(biāo)準(zhǔn)方程的應(yīng)用是本節(jié)的難點(diǎn)。為了突破難點(diǎn),設(shè)計(jì)三個(gè)例題。第一、二個(gè)例題,從特殊到一般給出切線方

13、程,培養(yǎng)學(xué)生探究問題的興趣,不斷完善自己的認(rèn)知結(jié)構(gòu)。第三個(gè)例題,充分利用多媒體的動(dòng)感演示,刺激學(xué)生的感官,引起更強(qiáng)的注意,從而使學(xué)生理解理論來源于實(shí)踐,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,激發(fā)學(xué)生自主探究問題的興趣,增強(qiáng)應(yīng)用意識(shí);同時(shí)培養(yǎng)學(xué)生勇于探索、堅(jiān)忍不拔的意志品質(zhì)。最后設(shè)計(jì)了“問題延伸”,讓學(xué)生帶著問題走進(jìn)課堂,又帶著問題走出課堂,激發(fā)學(xué)生不斷求知、不斷探索的欲望。 在整個(gè)教學(xué)過程中,主要著眼于“引”,啟發(fā)學(xué)生“探”,把“引”和“探”有機(jī)的結(jié)合起來,教師的每項(xiàng)措施都是為了力求給學(xué)生創(chuàng)造一種思維情境,一種動(dòng)手、動(dòng)腦、動(dòng)口并且主動(dòng)參與學(xué)習(xí)的機(jī)會(huì),激發(fā)學(xué)生求知的欲望,促使學(xué)生掌握知識(shí),解決問題。   媒體設(shè)計(jì):   采用powerpoint媒體。本節(jié)知識(shí)容量大,同時(shí)又有圖形。為了在短時(shí)間內(nèi)完成教學(xué)內(nèi)容,故采用演示文稿的方式,增加信息量,節(jié)省時(shí)間。同時(shí)動(dòng)態(tài)演示圖形,刺激學(xué)生的感官,引起更強(qiáng)的注意,提高課堂教學(xué)效率

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!