2022年高中數(shù)學(xué) 第一章《算法案例》教案1 新人教A版必修3

上傳人:xt****7 文檔編號(hào):105331701 上傳時(shí)間:2022-06-11 格式:DOC 頁(yè)數(shù):4 大?。?0.52KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高中數(shù)學(xué) 第一章《算法案例》教案1 新人教A版必修3_第1頁(yè)
第1頁(yè) / 共4頁(yè)
2022年高中數(shù)學(xué) 第一章《算法案例》教案1 新人教A版必修3_第2頁(yè)
第2頁(yè) / 共4頁(yè)
2022年高中數(shù)學(xué) 第一章《算法案例》教案1 新人教A版必修3_第3頁(yè)
第3頁(yè) / 共4頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2022年高中數(shù)學(xué) 第一章《算法案例》教案1 新人教A版必修3》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2022年高中數(shù)學(xué) 第一章《算法案例》教案1 新人教A版必修3(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高中數(shù)學(xué) 第一章《算法案例》教案1 新人教A版必修3 (1)教學(xué)目標(biāo) (a)知識(shí)與技能 1.理解輾轉(zhuǎn)相除法與更相減損術(shù)中蘊(yùn)含的數(shù)學(xué)原理,并能根據(jù)這些原理進(jìn)行算法分析。 2.基本能根據(jù)算法語(yǔ)句與程序框圖的知識(shí)設(shè)計(jì)完整的程序框圖并寫(xiě)出算法程序。 (b)過(guò)程與方法 在輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù)的學(xué)習(xí)過(guò)程中對(duì)比我們常見(jiàn)的約分求公因式的方法,比較它們?cè)谒惴ㄉ系膮^(qū)別,并從程序的學(xué)習(xí)中體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn),領(lǐng)會(huì)數(shù)學(xué)算法計(jì)算機(jī)處理的結(jié)合方式,初步掌握把數(shù)學(xué)算法轉(zhuǎn)化成計(jì)算機(jī)語(yǔ)言的一般步驟。 (c)情態(tài)與價(jià)值 1.通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

2、 2.在學(xué)習(xí)古代數(shù)學(xué)家解決數(shù)學(xué)問(wèn)題的方法的過(guò)程中培養(yǎng)嚴(yán)謹(jǐn)?shù)倪壿嬎季S能力,在利用算法解決數(shù)學(xué)問(wèn)題的過(guò)程中培養(yǎng)理性的精神和動(dòng)手實(shí)踐的能力。 (2)教學(xué)重難點(diǎn) 重點(diǎn):理解輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù)的方法。 難點(diǎn):把輾轉(zhuǎn)相除法與更相減損術(shù)的方法轉(zhuǎn)換成程序框圖與程序語(yǔ)言。 (3)學(xué)法與教學(xué)用具 學(xué)法:在理解最大公約數(shù)的基礎(chǔ)上去發(fā)現(xiàn)輾轉(zhuǎn)相除法與更相減損術(shù)中的數(shù)學(xué)規(guī)律,并能模仿已經(jīng)學(xué)過(guò)的程序框圖與算法語(yǔ)句設(shè)計(jì)出輾轉(zhuǎn)相除法與更相減損術(shù)的程序框圖與算法程序。 教學(xué)用具:電腦,計(jì)算器,圖形計(jì)算器 (4)教學(xué)設(shè)想 (一)創(chuàng)設(shè)情景,揭示課題 1.教師首先提出問(wèn)題:在初中,我們已經(jīng)學(xué)過(guò)求最大

3、公約數(shù)的知識(shí),你能求出18與30的公約數(shù)嗎? 2.接著教師進(jìn)一步提出問(wèn)題,我們都是利用找公約數(shù)的方法來(lái)求最大公約數(shù),如果公約數(shù)比較大而且根據(jù)我們的觀(guān)察又不能得到一些公約數(shù),我們又應(yīng)該怎樣求它們的最大公約數(shù)?比如求8251與6105的最大公約數(shù)?這就是我們這一堂課所要探討的內(nèi)容。 (二)研探新知 1.輾轉(zhuǎn)相除法 例1 求兩個(gè)正數(shù)8251和6105的最大公約數(shù)。 (分析:8251與6105兩數(shù)都比較大,而且沒(méi)有明顯的公約數(shù),如能把它們都變小一點(diǎn),根據(jù)已有的知識(shí)即可求出最大公約數(shù)) 解:8251=6105×1+2146 顯然8251的最大公約數(shù)也必是2146的約數(shù),同樣6105與214

4、6的公約數(shù)也必是8251的約數(shù),所以8251與6105的最大公約數(shù)也是6105與2146的最大公約數(shù)。 6105=2146×2+1813 2146=1813×1+333 1813=333×5+148 333=148×2+37 148=37×4+0 則37為8251與6105的最大公約數(shù)。 以上我們求最大公約數(shù)的方法就是輾轉(zhuǎn)相除法。也叫歐幾里德算法,它是由歐幾里德在公元前300年左右首先提出的。利用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下: 第一步:用較大的數(shù)m除以較小的數(shù)n得到一個(gè)商q0和一個(gè)余數(shù)r0; 第二步:若r0=0,則n為m,n的最大公約數(shù);若r0≠0,則用除數(shù)n除以余數(shù)r0

5、得到一個(gè)商q1和一個(gè)余數(shù)r1; 第三步:若r1=0,則r1為m,n的最大公約數(shù);若r1≠0,則用除數(shù)r0除以余數(shù)r1得到一個(gè)商q2和一個(gè)余數(shù)r2; …… 依次計(jì)算直至rn=0,此時(shí)所得到的rn-1即為所求的最大公約數(shù)。 練習(xí):利用輾轉(zhuǎn)相除法求兩數(shù)4081與20723的最大公約數(shù)(答案:53) 2.更相減損術(shù) 我國(guó)早期也有解決求最大公約數(shù)問(wèn)題的算法,就是更相減損術(shù)。 更相減損術(shù)求最大公約數(shù)的步驟如下:可半者半之,不可半者,副置分母·子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。 翻譯出來(lái)為: 第一步:任意給出兩個(gè)正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡(jiǎn);若不是,執(zhí)行第二步

6、。 第二步:以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)(等數(shù))就是所求的最大公約數(shù)。 例2 用更相減損術(shù)求98與63的最大公約數(shù). 解:由于63不是偶數(shù),把98和63以大數(shù)減小數(shù),并輾轉(zhuǎn)相減,即:98-63=35 63-35=28 35-28=7 28-7=21 21-7=14 14-7=7 所以,98與63的最大公約數(shù)是7。 練習(xí):用更相減損術(shù)求兩個(gè)正數(shù)84與72的最大公約數(shù)。(答案:12) 3.比較輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別 (1)都是求最大公約數(shù)的方法,計(jì)算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)

7、以減法為主,計(jì)算次數(shù)上輾轉(zhuǎn)相除法計(jì)算次數(shù)相對(duì)較少,特別當(dāng)兩個(gè)數(shù)字大小區(qū)別較大時(shí)計(jì)算次數(shù)的區(qū)別較明顯。 (2)從結(jié)果體現(xiàn)形式來(lái)看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到 4. 輾轉(zhuǎn)相除法與更相減損術(shù)計(jì)算的程序框圖及程序 利用輾轉(zhuǎn)相除法與更相減損術(shù)的計(jì)算算法,我們可以設(shè)計(jì)出程序框圖以及BSAIC程序來(lái)在計(jì)算機(jī)上實(shí)現(xiàn)輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù),下面由同學(xué)們?cè)O(shè)計(jì)相應(yīng)框圖并相互之間檢查框圖與程序的正確性,并在計(jì)算機(jī)上驗(yàn)證自己的結(jié)果。 (1)輾轉(zhuǎn)相除法的程序框圖及程序 程序框圖: 程序: INPUT “m=”;m INPUT “n=”;n

8、 IF m0 r=m MOD n m=n n=r WEND PRINT m END 5.課堂練習(xí) 一.用輾轉(zhuǎn)相除法求下列各組數(shù)的最大公約數(shù),并在自己編寫(xiě)的BASIC程序中驗(yàn)證。 (1)225;135 (2)98;196 (3)72;168 (4)153;119 二.思考:用求質(zhì)因數(shù)的方法可否求上述4組數(shù)的最大公約數(shù)?可否利用求質(zhì)因數(shù)的算法設(shè)計(jì)出程序框圖及程序?若能,在電腦上測(cè)試自己的程序;若不能說(shuō)明無(wú)法實(shí)現(xiàn)的理由。 三。思考:利用輾轉(zhuǎn)相除法是否可以求兩數(shù)的最大公倍數(shù)?試設(shè)計(jì)程序框圖并轉(zhuǎn)換成程序在BASIC中實(shí)現(xiàn)。 6.小結(jié): 輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù)的計(jì)算方法及完整算法程序的編寫(xiě)。 (5)評(píng)價(jià)設(shè)計(jì) 作業(yè):P38 A(1)B(2) 補(bǔ)充:設(shè)計(jì)更相減損術(shù)求最大公約數(shù)的程序框圖

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!