(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何 第2講 圓錐曲線的定義、方程與性質(zhì)學(xué)案 理 新人教A版

上傳人:彩*** 文檔編號(hào):105557719 上傳時(shí)間:2022-06-12 格式:DOC 頁數(shù):20 大小:2.74MB
收藏 版權(quán)申訴 舉報(bào) 下載
(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何 第2講 圓錐曲線的定義、方程與性質(zhì)學(xué)案 理 新人教A版_第1頁
第1頁 / 共20頁
(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何 第2講 圓錐曲線的定義、方程與性質(zhì)學(xué)案 理 新人教A版_第2頁
第2頁 / 共20頁
(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何 第2講 圓錐曲線的定義、方程與性質(zhì)學(xué)案 理 新人教A版_第3頁
第3頁 / 共20頁

下載文檔到電腦,查找使用更方便

36 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何 第2講 圓錐曲線的定義、方程與性質(zhì)學(xué)案 理 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何 第2講 圓錐曲線的定義、方程與性質(zhì)學(xué)案 理 新人教A版(20頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第2講 圓錐曲線的定義、方程與性質(zhì) [做真題] 題型一 圓錐曲線的定義與方程 1.(2019·高考全國(guó)卷Ⅰ)已知橢圓C的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),過F2的直線與C交于A,B兩點(diǎn),若|AF2|=2|F2B|,|AB|=|BF1|,則C的方程為(  ) A.+y2=1       B.+=1 C.+=1 D.+=1 解析:選B.由題意設(shè)橢圓的方程為+=1(a>b>0),連接F1A,令|F2B|=m,則|AF2|=2m,|BF1|=3m.由橢圓的定義知,4m=2a,得m=,故|F2A|=a=|F1A|,則點(diǎn)A為橢圓C的上頂點(diǎn)或下頂點(diǎn).令∠OAF2=θ(O為坐標(biāo)原點(diǎn)),

2、則sin θ=.在等腰三角形ABF1中,cos 2θ==,所以=1-2,得a2=3.又c2=1,所以b2=a2-c2=2,橢圓C的方程為+=1.故選B. 2.(2019·高考全國(guó)卷Ⅱ)若拋物線y2=2px(p>0)的焦點(diǎn)是橢圓+=1的一個(gè)焦點(diǎn),則p=(  ) A.2 B.3 C.4 D.8 解析:選D.由題意,知拋物線的焦點(diǎn)坐標(biāo)為,橢圓的焦點(diǎn)坐標(biāo)為(±,0),所以=,解得p=8,故選D. 3.(一題多解)(2017·高考全國(guó)卷Ⅲ)已知雙曲線C:-=1 (a>0,b>0)的一條漸近線方程為y=x,且與橢圓+=1有公共焦點(diǎn),則C的方程為(  ) A.-=1 B.-=1 C.-=

3、1 D.-=1 解析:選B.法一:由雙曲線的漸近線方程可設(shè)雙曲線方程為-=k(k>0),即-=1,因?yàn)殡p曲線與橢圓+=1有公共焦點(diǎn),所以4k+5k=12-3,解得k=1,故雙曲線C的方程為-=1.故選B. 法二:因?yàn)闄E圓+=1的焦點(diǎn)為(±3,0),雙曲線與橢圓+=1有公共焦點(diǎn),所以a2+b2=(±3)2=9①,因?yàn)殡p曲線的一條漸近線為y=x,所以=②,聯(lián)立①②可解得a2=4,b2=5,所以雙曲線C的方程為-=1. 4.(2017·高考全國(guó)卷Ⅱ)已知F是拋物線C:y2=8x的焦點(diǎn),M是C上一點(diǎn),F(xiàn)M的延長(zhǎng)線交y軸于點(diǎn)N.若M為FN的中點(diǎn),則|FN|=____________. 解析:法

4、一:依題意,拋物線C:y2=8x的焦點(diǎn)F(2,0),準(zhǔn)線x=-2,因?yàn)镸是C上一點(diǎn),F(xiàn)M的延長(zhǎng)線交y軸于點(diǎn)N,M為FN的中點(diǎn),設(shè)M(a,b)(b>0),所以a=1,b=2,所以N(0,4),|FN|==6. 法二:依題意,拋物線C:y2=8x的焦點(diǎn)F(2,0),準(zhǔn)線x=-2,因?yàn)镸是C上一點(diǎn),F(xiàn)M的延長(zhǎng)線交y軸于點(diǎn)N,M為FN的中點(diǎn),則點(diǎn)M的橫坐標(biāo)為1,所以|MF|=1-(-2)=3,|FN|=2|MF|=6. 答案:6 題型二 圓錐曲線的幾何性質(zhì) 1.(2018·高考全國(guó)卷Ⅱ)已知F1,F(xiàn)2是橢圓C:+=1(a>b>0)的左、右焦點(diǎn),A是C的左頂點(diǎn),點(diǎn)P在過A且斜率為的直線上,△PF

5、1F2為等腰三角形,∠F1F2P=120°,則C的離心率為(  ) A. B. C. D. 解析:選D.由題意可得橢圓的焦點(diǎn)在x軸上,如圖所示,設(shè)|F1F2|=2c,因?yàn)椤鱌F1F2為等腰三角形,且∠F1F2P=120°,所以|PF2|=|F1F2|=2c,所以|OF2|=c,所以點(diǎn)P坐標(biāo)為(c+2ccos 60°,2csin 60°),即點(diǎn)P(2c,c).因?yàn)辄c(diǎn)P在過點(diǎn)A,且斜率為的直線上,所以=,解得=,所以e=,故選D. 2.(一題多解)(2019·高考全國(guó)卷Ⅰ)已知雙曲線C:-=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線與C的兩條漸近線分別交于A,B

6、兩點(diǎn).若=,·=0,則C的離心率為________. 解析:通解:因?yàn)椤ぃ?,所以F1B⊥F2B,如圖. 所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因?yàn)椋?,所以點(diǎn)A為F1B的中點(diǎn),又點(diǎn)O為F1F2的中點(diǎn),所以O(shè)A∥BF2,所以F1B⊥OA,因?yàn)橹本€OA,OB為雙曲線C的兩條漸近線,所以tan ∠BF1O=,tan ∠BOF2=.因?yàn)閠an ∠BOF2=tan(2∠BF1O),所以=,所以b2=3a2,所以c2-a2=3a2,即2a=c,所以雙曲線的離心率e==2. 優(yōu)解:因?yàn)椤ぃ?,所以F1B⊥F2B,在Rt△F1BF2中,|OB|=|OF2

7、|,所以∠OBF2=∠OF2B,又=,所以A為F1B的中點(diǎn),所以O(shè)A∥F2B,所以∠F1OA=∠OF2B.又∠F1OA=∠BOF2,所以△OBF2為等邊三角形.由F2(c,0)可得B,因?yàn)辄c(diǎn)B在直線y=x上,所以c=·,所以=,所以e==2. 答案:2 3.(一題多解)(2018·高考全國(guó)卷Ⅲ)已知點(diǎn)M(-1,1)和拋物線C:y2=4x,過C的焦點(diǎn)且斜率為k的直線與C交于A,B兩點(diǎn).若∠AMB=90°,則k=________. 解析:法一:由題意知拋物線的焦點(diǎn)為(1,0),則過C的焦點(diǎn)且斜率為k的直線方程為y=k(x-1)(k≠0),由消去y得k2(x-1)2=4x,即k2x2-(2k2

8、+4)x+k2=0,設(shè)A(x1,y1),B(x2,y2),則x1+x2=,x1x2=1.由消去x得y2=4,即y2-y-4=0,則y1+y2=,y1y2=-4,由∠AMB=90°,得·=(x1+1,y1-1)·(x2+1,y2-1)=x1x2+x1+x2+1+y1y2-(y1+y2)+1=0,將x1+x2=,x1x2=1與y1+y2=,y1y2=-4代入,得k=2. 法二:設(shè)拋物線的焦點(diǎn)為F,A(x1,y1),B(x2,y2),則所以y-y=4(x1-x2),則k==,取AB的中點(diǎn)M′(x0,y0),分別過點(diǎn)A,B作準(zhǔn)線x=-1的垂線,垂足分別為A′,B′,又∠AMB=90°,點(diǎn)M在準(zhǔn)線x=

9、-1上,所以|MM′|=|AB|=(|AF|+|BF|)=(|AA′|+|BB′|).又M′為AB的中點(diǎn),所以MM′平行于x軸,且y0=1,所以y1+y2=2,所以k=2. 答案:2 [明考情] 1.圓錐曲線的定義、方程與性質(zhì)是每年高考必考的內(nèi)容.以選擇、填空題的形式考查,常出現(xiàn)在第4~11 題或15~16題的位置,著重考查圓錐曲線的標(biāo)準(zhǔn)方程與幾何性質(zhì),難度中等. 2.圓錐曲線的綜合問題多以解答題的形式考查,常作為壓軸題出現(xiàn)在第20題的位置,一般難度較大. 圓錐曲線的定義與標(biāo)準(zhǔn)方程 [典型例題] (1)橢圓+=1的左焦點(diǎn)為F,直線x=m與橢圓相交于點(diǎn)M,N,當(dāng)△FMN的

10、周長(zhǎng)最大時(shí),△FMN的面積是(  ) A.          B. C. D. (2)設(shè)F1,F(xiàn)2分別是雙曲線C:-=1(a>0,b>0)的左、右焦點(diǎn),P是C上一點(diǎn),若|PF1|+|PF2|=6a,且△PF1F2最小內(nèi)角的大小為30°,則雙曲線C的漸近線方程是(  ) A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0 【解析】 (1)如圖,設(shè)橢圓的右焦點(diǎn)為F′,連接MF′,NF′. 因?yàn)閨MF|+|NF|+|MF′|+|NF′|≥|MF|+|NF|+|MN|,所以當(dāng)直線x=m過橢圓的右焦點(diǎn)時(shí),△FMN的周長(zhǎng)最大. 此時(shí)|MN|==,又c===1,所以

11、此時(shí)△FMN的面積S=×2×=.故選C. (2)不妨設(shè)P為雙曲線C右支上一點(diǎn),由雙曲線的定義,可得|PF1|-|PF2|=2a. 又|PF1|+|PF2|=6a,解得|PF1|=4a,|PF2|=2a,又|F1F2|=2c,則|PF2|=2a最小,所以∠PF1F2=30°. 在△PF1F2中,由余弦定理,可得cos 30°===,整理得c2+3a2=2ac,解得c=a,所以b= =a. 所以雙曲線C的漸近線方程為y=±x.故選A. 【答案】 (1)C (2)A (1)圓錐曲線的定義 ①橢圓:|MF1|+|MF2|=2a(2a>|F1F2|). ②雙曲線:||MF1|-|MF

12、2||=2a(2a<|F1F2|). ③拋物線:|MF|=d(d為M點(diǎn)到準(zhǔn)線的距離). [注意] 應(yīng)用圓錐曲線定義解題時(shí),易忽視定義中隱含條件導(dǎo)致錯(cuò)誤. (2)求解圓錐曲線標(biāo)準(zhǔn)方程的思路 定型 就是指定類型,也就是確定圓錐曲線的焦點(diǎn)位置,從而設(shè)出標(biāo)準(zhǔn)方程 計(jì)算 即利用待定系數(shù)法求出方程中的a2,b2或p.另外,當(dāng)焦點(diǎn)位置無法確定時(shí),拋物線常設(shè)為y2=2ax或x2=2ay(a≠0),橢圓常設(shè)為mx2+ny2=1(m>0,n>0),雙曲線常設(shè)為mx2-ny2=1(mn>0) [對(duì)點(diǎn)訓(xùn)練] 1.設(shè)F1,F(xiàn)2為橢圓+=1的兩個(gè)焦點(diǎn),點(diǎn)P在橢圓上,若線段PF1的中點(diǎn)在y軸上,則的值為(

13、  ) A. B. C. D. 解析:選D.如圖,設(shè)線段PF1的中點(diǎn)為M,因?yàn)镺是F1F2的中點(diǎn),所以O(shè)M∥PF2,可得PF2⊥x軸,|PF2|==,|PF1|=2a-|PF2|=,所以=. 2.(2019·福州模擬)已知雙曲線C:-=1(a>0,b>0)的右焦點(diǎn)為F,點(diǎn)B是虛軸的一個(gè)端點(diǎn),線段BF與雙曲線C的右支交于點(diǎn)A,若=2,且||=4,則雙曲線C的方程為(  ) A.-=1 B.-=1 C.-=1 D.-=1 解析:選D.不妨設(shè)B(0,b),由=2,F(xiàn)(c,0),可得A,代入雙曲線C的方程可得×-=1, 所以=.?、? 又||==4,c2=a2+b2, 所

14、以a2+2b2=16.?、? 由①②可得,a2=4,b2=6, 所以雙曲線C的方程為-=1. 3.過拋物線y2=2px(p>0)的焦點(diǎn)F作直線交拋物線于A,B兩點(diǎn),若|AF|=2|BF|=6,則p=________. 解析:設(shè)直線AB的方程為x=my+,A(x1,y1),B(x2,y2),且x1>x2,將直線AB的方程代入拋物線方程得y2-2pmy-p2=0,所以y1y2=-p2,4x1x2=p2.設(shè)拋物線的準(zhǔn)線為l,過A作AC⊥l,垂足為C,過B作BD⊥l,垂足為D,因?yàn)閨AF|=2|BF|=6,根據(jù)拋物線的定義知,|AF|=|AC|=x1+=6,|BF|=|BD|=x2+=3,所以x

15、1-x2=3,x1+x2=9-p,所以(x1+x2)2-(x1-x2)2=4x1x2=p2,即18p-72=0,解得p=4. 答案:4 圓錐曲線的性質(zhì) [典型例題] (1)(2019·高考全國(guó)卷Ⅱ)設(shè)F為雙曲線C:-=1(a>0,b>0)的右焦點(diǎn),O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與圓x2+y2=a2交于 P,Q兩點(diǎn).若|PQ|=|OF|,則C的離心率為(  ) A.        B. C.2 D. (2)(2019·濟(jì)南市模擬考試)設(shè)F1,F(xiàn)2分別是橢圓E:+=1(a>b>0)的左、右焦點(diǎn),過F2的直線交橢圓于A,B兩點(diǎn),且1·2=0,2=2,則橢圓E的離心率為(  )

16、 A. B. C. D. 【解析】 (1)如圖,由題意,知以O(shè)F為直徑的圓的方程為+y2=①,將x2+y2=a2記為②式,①-②得x=,則以O(shè)F為直徑的圓與圓x2+y2=a2的相交弦所在直線的方程為x=,所以|PQ|=2.由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e=,故選A. (2)設(shè)|BF2|=m,則|AF2|=2m.連接BF1,由橢圓的定義可知|AF1|=2a-2m,|BF1|=2a-m.由1·2=0知AF1⊥AF2,故在Rt△ABF1中,(2a-2m)2+(3m)2=(2a-m)2,整理得m=.故在Rt△AF1F2中,

17、|AF1|=,|AF2|=,故+=4c2,解得e=. 【答案】 (1)A (2)C (1)橢圓、雙曲線的離心率(或范圍)的求法 求橢圓、雙曲線的離心率或離心率的范圍,關(guān)鍵是根據(jù)已知條件確定a,b,c的等量關(guān)系或不等關(guān)系,然后把b用a,c代換,求的值. (2)雙曲線的漸近線的求法及用法 ①求法:把雙曲線標(biāo)準(zhǔn)方程等號(hào)右邊的1改為零,分解因式可得. ②用法:(i)可得或的值. (ii)利用漸近線方程設(shè)所求雙曲線的方程.  [對(duì)點(diǎn)訓(xùn)練] 1.雙曲線-=1(a>0,b>0)的離心率為,則其漸近線方程為(  ) A.y=±x B.y=±x C.y=±x D.y=±x 解析

18、:選A.因?yàn)閑===,所以a2+b2=3a2,所以b=a.所以漸近線方程為y=±x. 2.(2019·廣州市調(diào)研測(cè)試)已知拋物線y2=2px(p>0)與雙曲線-=1(a>0,b>0)有相同的焦點(diǎn)F,點(diǎn)A是兩曲線的一個(gè)交點(diǎn),且AF⊥x軸,則雙曲線的離心率為(  ) A.+1 B.+1 C.+1 D.+2 解析:選A.如圖,結(jié)合題意畫出圖形,因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,所以由題設(shè)知雙曲線的右焦點(diǎn)的坐標(biāo)為,所以a2+b2=①.因?yàn)锳F⊥x軸,所以由點(diǎn)A在拋物線上可得A(取A在第一象限),又點(diǎn)A在雙曲線上,所以p=②.將②代入①得a2+b2=,即b4=4a4+4a2b2,所以4+4-1=0,所

19、以=,從而e2===(+1)2,故e=+1.故選A. 直線與圓錐曲線的位置關(guān)系 [典型例題] 命題角度一 位置關(guān)系的判斷及應(yīng)用 在直角坐標(biāo)系xOy中,直線l:y=t(t≠0)交y軸于點(diǎn)M,交拋物線C:y2=2px(p>0)于點(diǎn)P,M關(guān)于點(diǎn)P的對(duì)稱點(diǎn)為N,連接ON并延長(zhǎng)交C于點(diǎn)H. (1)求; (2)除H以外,直線MH與C是否有其他公共點(diǎn)?說明理由. 【解】 (1)由已知得M(0,t),P. 又N為M關(guān)于點(diǎn)P的對(duì)稱點(diǎn),故N,ON的方程為y=x,代入y2=2px,整理得px2-2t2x=0,解得x1=0,x2=.因此H. 所以N為OH的中點(diǎn),即=2. (2)直線MH與C除

20、H以外沒有其他公共點(diǎn).理由如下: 直線MH的方程為y-t=x,即x=(y-t). 代入y2=2px得y2-4ty+4t2=0,解得y1=y(tǒng)2=2t,即直線MH與C只有一個(gè)公共點(diǎn),所以除H以外直線MH與C沒有其他公共點(diǎn). (1)直線與圓錐曲線有兩個(gè)不同的公共點(diǎn)的判定 通常的方法是直線方程與圓錐曲線方程聯(lián)立,消元后得到一元二次方程,其Δ>0;另一方法就是數(shù)形結(jié)合,如直線與雙曲線有兩個(gè)不同的公共點(diǎn),可通過判定直線的斜率與雙曲線漸近線的斜率的大小得到. (2)直線與圓錐曲線只有一個(gè)公共點(diǎn)的結(jié)論 直線與圓錐曲線只有一個(gè)公共點(diǎn),則直線與雙曲線的一條漸近線平行,或直線與拋物線的對(duì)稱軸平行,或

21、直線與圓錐曲線相切.  命題角度二 弦長(zhǎng)問題 (2019·高考全國(guó)卷Ⅰ)已知拋物線C:y2=3x的焦點(diǎn)為F,斜率為的直線l與C的交點(diǎn)為A,B,與x軸的交點(diǎn)為P. (1)若|AF|+|BF|=4,求l的方程; (2)若=3,求|AB|. 【解】 設(shè)直線l:y=x+t,A(x1,y1),B(x2,y2). (1)由題設(shè)得F,故|AF|+|BF|=x1+x2+,由題設(shè)可得x1+x2=. 由可得9x2+12(t-1)x+4t2=0,則x1+x2=-. 從而-=,得t=-. 所以l的方程為y=x-. (2)由=3可得y1=-3y2. 由可得y2-2y+2t=0. 所以y1+y

22、2=2.從而-3y2+y2=2,故y2=-1,y1=3. 代入C的方程得x1=3,x2=. 故|AB|=. 直線與圓錐曲線的相交弦弦長(zhǎng)的求法 解決直線與圓錐曲線的相交弦問題的通法是將直線方程與圓錐曲線方程聯(lián)立,消去y或x后得到一元二次方程,當(dāng)Δ>0時(shí),直線與圓錐曲線有兩個(gè)交點(diǎn),設(shè)為A(x1,y1),B(x2,y2),由根與系數(shù)的關(guān)系求出x1+x2,x1x2或y1+y2,y1y2,則弦長(zhǎng)|AB|=·=·=·|y1-y2|=·(k為直線的斜率且k≠0),當(dāng)A,B兩點(diǎn)坐標(biāo)易求時(shí)也可以直接用|AB|=求之.  命題角度三 定比、定點(diǎn)問題 已知橢圓C的兩個(gè)焦點(diǎn)為F1(-1,0),F(xiàn)2

23、(1,0),且經(jīng)過點(diǎn)E. (1)求橢圓C的方程; (2)過點(diǎn)F1的直線l與橢圓C交于A,B兩點(diǎn)(點(diǎn)A位于x軸上方),若=λ,且2≤λ<3,求直線l的斜率k的取值范圍. 【解】 (1)由解得 所以橢圓C的方程為+=1. (2)由題意得直線l的方程為y=k(x+1)(k>0), 聯(lián)立方程,得整理得y2-y-9=0,Δ=+144>0, 設(shè)A(x1,y1),B(x2,y2),則y1+y2=,y1y2=, 又=λ,所以y1=-λy2,所以y1y2=(y1+y2)2, 則=,λ+-2=, 因?yàn)?≤λ<3,所以≤λ+-2<, 即≤<,且k>0,解得0<k≤. 故直線l的斜率k的取值范

24、圍是. (1)對(duì)于弦的中點(diǎn)問題常用“根與系數(shù)的關(guān)系”或“點(diǎn)差法”求解.在使用“根與系數(shù)的關(guān)系”時(shí),要注意使用條件Δ>0;在用“點(diǎn)差法”時(shí),要檢驗(yàn)直線與圓錐曲線是否相交. (2)圓錐曲線以P(x0,y0)(y0≠0)為中點(diǎn)的弦所在直線的斜率分別是k=-(橢圓+=1),k=(雙曲線-=1),k=(拋物線y2=2px),其中k=(x1≠x2),(x1,y1),(x2,y2)為弦端點(diǎn)的坐標(biāo).  [對(duì)點(diǎn)訓(xùn)練] 1.(2019·高考全國(guó)卷Ⅲ)已知曲線C:y=,D為直線y=-上的動(dòng)點(diǎn),過D作C的兩條切線,切點(diǎn)分別為A,B. (1)證明:直線AB過定點(diǎn); (2)若以E為圓心的圓與直線AB相切

25、,且切點(diǎn)為線段AB的中點(diǎn),求四邊形ADBE的面積. 解:(1)證明:設(shè)D,A(x1,y1),則x=2y1. 由于y′=x,所以切線DA的斜率為x1,故=x1. 整理得2tx1-2y1+1=0. 設(shè)B(x2,y2),同理可得2tx2-2y2+1=0. 故直線AB的方程為2tx-2y+1=0. 所以直線AB過定點(diǎn). (2)由(1)得直線AB的方程為y=tx+.由可得x2-2tx-1=0. 于是x1+x2=2t,x1x2=-1,y1+y2=t(x1+x2)+1=2t2+1, |AB|=|x1-x2|=×=2(t2+1). 設(shè)d1,d2分別為點(diǎn)D,E到直線AB的距離,則d1=,d2

26、=. 因此,四邊形ADBE的面積S=|AB|(d1+d2)=(t2+3). 設(shè)M為線段AB的中點(diǎn),則M. 由于⊥,而=(t,t2-2),與向量(1,t)平行,所以t+(t2-2)t=0. 解得t=0或t=±1. 當(dāng)t=0時(shí),S=3;當(dāng)t=±1時(shí),S=4. 因此,四邊形ADBE的面積為3或4. 2.(2019·湖南長(zhǎng)沙模擬)已知橢圓C:+=1(a>b>0)的右焦點(diǎn)為(,0),且經(jīng)過點(diǎn),點(diǎn)M是x軸上的一點(diǎn),過點(diǎn)M的直線l與橢圓C交于A,B兩點(diǎn)(點(diǎn)A在x軸的上方). (1)求橢圓C的方程; (2)若=2,且直線l與圓O:x2+y2=相切于點(diǎn)N,求|MN|. 解:(1)由題意知

27、得(a2-4)(4a2-3)=0,又a2=3+b2>3,故a2=4,則b2=1,所以橢圓C的方程為+y2=1. (2)設(shè)M(m,0),直線l:x=ty+m,A(x1,y1),B(x2,y2),由=2,得y1=-2y2. 由得(t2+4)y2+2tmy+m2-4=0, 則y1+y2=-,y1y2=. 由y1y2=-2y,y1+y2=-2y2+y2=-y2, 得y1y2=-2[-(y1+y2)]2=-2(y1+y2)2, 所以=-2, 化簡(jiǎn)得(m2-4)(t2+4)=-8t2m2. 易知原點(diǎn)O到直線l的距離d=, 又直線l與圓O:x2+y2=相切, 所以=,即t2=m2-1.

28、 由 得21m4-16m2-16=0, 即(3m2-4)(7m2+4)=0, 解得m2=,此時(shí)t2=,滿足Δ>0, 所以M. 在Rt△OMN中,|MN|==. 一、選擇題 1.已知雙曲線-=1(a>0,b>0)的焦點(diǎn)到漸近線的距離為,且離心率為2,則該雙曲線的實(shí)軸的長(zhǎng)為(  ) A.1          B. C.2 D.2 解析:選C.由題意知雙曲線的焦點(diǎn)(c,0)到漸近線bx-ay=0的距離為=b=,即c2-a2=3,又e==2,所以a=1,該雙曲線的實(shí)軸的長(zhǎng)為2a=2. 2.若拋物線y2=4x上一點(diǎn)P到其焦點(diǎn)F的距離為2,O為坐標(biāo)原點(diǎn),則△OFP的面積為(  

29、) A. B.1 C. D.2 解析:選B.設(shè)P(x0,y0),依題意可得|PF|=x0+1=2,解得x0=1,故y=4×1,解得y0=±2,不妨取P(1,2),則△OFP的面積為×1×2=1. 3.(2019·高考全國(guó)卷Ⅲ)雙曲線C:-=1的右焦點(diǎn)為F,點(diǎn)P在C的一條漸近線上,O為坐標(biāo)原點(diǎn).若|PO|=|PF|,則△PFO的面積為(  ) A. B. C.2 D.3 解析:選A.不妨設(shè)點(diǎn)P在第一象限,根據(jù)題意可知c2=6,所以|OF|=. 又tan∠POF==,所以等腰三角形POF的高h(yuǎn)=×=, 所以S△PFO=××=. 4.(2019·昆明模擬)已知F1,F(xiàn)2為

30、橢圓C:+=1(a>b>0)的左、右焦點(diǎn),B為C的短軸的一個(gè)端點(diǎn),直線BF1與C的另一個(gè)交點(diǎn)為A,若△BAF2為等腰三角形,則=(  ) A. B. C. D.3 解析:選A.如圖,不妨設(shè)點(diǎn)B在y軸的正半軸上,根據(jù)橢圓的定義,得|BF1|+|BF2|=2a,|AF1|+|AF2|=2a,由題意知|AB|=|AF2|,所以|BF1|=|BF2|=a,|AF1|=,|AF2|=.所以=.故選A. 5.已知F是拋物線x2=4y的焦點(diǎn),直線y=kx-1與該拋物線在第一象限內(nèi)交于點(diǎn)A,B,若|AF|=3|FB|,則k的值是(  ) A. B. C. D. 解析:選D.顯然k>0

31、.拋物線的準(zhǔn)線l:y=-1,設(shè)其與y軸交于點(diǎn)F′,則直線y=kx-1過點(diǎn)F′.分別過點(diǎn)A,B作l的垂線,垂足分別為A′,B′,根據(jù)拋物線定義,得|AF|=|AA′|,|BF|=|BB′|,根據(jù)已知,得==3.設(shè)A(x1,y1),B(x2,y2),則===3,即x1=3x2①.聯(lián)立拋物線方程與已知直線方程,消元得x2-4kx+4=0,則x1+x2=4k②,由①②得x1=3k,x2=k,又x1x2=4,所以3k·k=4,即k2=,解得k=(負(fù)值舍去). 6.(2019·湖南湘東六校聯(lián)考)已知橢圓Γ:+=1(a>b>0)的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,過右焦點(diǎn)F且斜率為k(k>0)的直線與Γ相交于A,B兩

32、點(diǎn).若=3,則k=(  ) A.1 B.2 C. D. 解析:選D.設(shè)A(x1,y1),B(x2,y2),因?yàn)椋?,所以y1=-3y2.因?yàn)闄E圓Γ的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,所以a=2b,設(shè)b=t,則a=2t,故c=t,所以+=1.設(shè)直線AB的方程為x=sy+t,代入上述橢圓方程,得(s2+4)y2+2sty-t2=0,所以y1+y2=-,y1y2=-,即-2y2=-,-3y=-,得s2=,k=,故選D. 二、填空題 7.已知P(1,)是雙曲線C:-=1(a>0,b>0)漸近線上的點(diǎn),則雙曲線C的離心率是________. 解析:雙曲線C的一條漸近線的方程為y=x,P(1,)是雙曲

33、線C漸近線上的點(diǎn),則=,所以離心率e====2. 答案:2 8.(2019·高考全國(guó)卷Ⅲ)設(shè)F1,F(xiàn)2為橢圓C:+=1的兩個(gè)焦點(diǎn),M為C上一點(diǎn)且在第一象限.若△MF1F2為等腰三角形,則M的坐標(biāo)為________. 解析:不妨令F1,F(xiàn)2分別為橢圓C的左、右焦點(diǎn),根據(jù)題意可知c==4.因?yàn)椤鱉F1F2為等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.設(shè)M(x,y), 則得 所以M的坐標(biāo)為(3,). 答案:(3,) 9.(2019·洛陽尖子生第二次聯(lián)考)過拋物線C:y2=2px(p>0)的焦點(diǎn)F的直線與拋物線C交于A,B兩點(diǎn),且=3,拋物線C的準(zhǔn)線l與x軸交

34、于點(diǎn)E,AA1⊥l于點(diǎn)A1,若四邊形AA1EF的面積為6,則p=________. 解析:不妨設(shè)點(diǎn)A在第一象限,如圖,作BB1⊥l于點(diǎn)B1,設(shè)直線AB與l的交點(diǎn)為D,由拋物線的定義及性質(zhì)可知|AA1|=|AF|,|BB1|=|BF|,|EF|=p. 設(shè)|BD|=m,|BF|=n,則===,即=,所以m=2n. 又=,所以==,所以n=, 因?yàn)閨DF|=m+n=2p,所以∠ADA1=30°. 又|AA1|=3n=2p,|EF|=p,所以|A1D|=2p,|ED|=p,所以|A1E|=p,所以直角梯形AA1EF的面積為(2p+p)·p=6,解得p=2. 答案:2 三、解答題 1

35、0.(2019·高考天津卷)設(shè)橢圓+=1(a>b>0)的左焦點(diǎn)為F,上頂點(diǎn)為B.已知橢圓的短軸長(zhǎng)為4,離心率為. (1)求橢圓的方程; (2)設(shè)點(diǎn)P在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)M為直線PB與x軸的交點(diǎn),點(diǎn)N在y軸的負(fù)半軸上,若|ON|=|OF|(O為原點(diǎn)),且OP⊥MN,求直線PB的斜率. 解:(1)設(shè)橢圓的半焦距為c,依題意,2b=4,=,又a2=b2+c2, 可得a=,b=2,c=1. 所以,橢圓的方程為+=1. (2)由題意,設(shè)P(xp,yp)(xp≠0),M(xM,0).設(shè)直線PB的斜率為k(k≠0), 又B(0,2),則直線PB的方程為y=kx+2,與橢圓方程聯(lián)

36、立 整理得(4+5k2)x2+20kx=0, 可得xp=-, 代入y=kx+2得yp=, 進(jìn)而直線OP的斜率為=. 在y=kx+2中,令y=0,得xM=-. 由題意得N(0,-1),所以直線MN的斜率為-. 由OP⊥MN,得·=-1,化簡(jiǎn)得k2=,從而k=±. 所以,直線PB的斜率為或-. 11.已知橢圓C:+=1(a>b>0)的離心率為,短軸長(zhǎng)為2. (1)求橢圓C的標(biāo)準(zhǔn)方程; (2)設(shè)直線l:y=kx+m與橢圓C交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若kOM·kON=,求原點(diǎn)O到直線l的距離的取值范圍. 解:(1)由題知e==,2b=2,又a2=b2+c2,所以b=1,a=

37、2, 所以橢圓C的標(biāo)準(zhǔn)方程為+y2=1. (2)設(shè)M(x1,y1),N(x2,y2),聯(lián)立得(4k2+1)x2+8kmx+4m2-4=0, 依題意,Δ=(8km)2-4(4k2+1)(4m2-4)>0,化簡(jiǎn)得m2<4k2+1,① x1+x2=-,x1x2=, y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2, 若kOM·kON=,則=,即4y1y2=5x1x2, 所以4k2x1x2+4km(x1+x2)+4m2=5x1x2, 所以(4k2-5)·+4km·(-)+4m2=0, 即(4k2-5)(m2-1)-8k2m2+m2(4k2+1)=0,化簡(jiǎn)

38、得m2+k2=,② 由①②得0≤m2<,<k2≤, 因?yàn)樵c(diǎn)O到直線l的距離d=, 所以d2===-1+, 又<k2≤, 所以0≤d2<,所以原點(diǎn)O到直線l的距離的取值范圍是. 12.(2019·成都市第二次診斷性檢測(cè))已知橢圓C:+=1(a>b>0)的短軸長(zhǎng)為4,離心率為. (1)求橢圓C的標(biāo)準(zhǔn)方程; (2)設(shè)橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,左、右頂點(diǎn)分別為A,B,點(diǎn)M,N為橢圓C上位于x軸上方的兩點(diǎn),且F1M∥F2N,直線F1M的斜率為2,記直線AM,BN的斜率分別為k1,k2,求3k1+2k2的值. 解:(1)由題意,得2b=4,=. 又a2-c2=b2,所以a=3,b=2,c=1. 所以橢圓C的標(biāo)準(zhǔn)方程為+=1. (2)由(1)可知A(-3,0),B(3,0),F(xiàn)1(-1,0). 據(jù)題意,直線F1M的方程為y=2(x+1). 記直線F1M與橢圓C的另一個(gè)交點(diǎn)為M′.設(shè)M(x1,y1)(y1>0),M′(x2,y2).因?yàn)镕1M∥F2N,所以根據(jù)對(duì)稱性,得N(-x2,-y2). 聯(lián)立,消去y,得14x2+27x+9=0. 由題意知x1>x2,所以x1=-,x2=-, k1===,k2===-, 所以3k1+2k2=3×+2×=0,即3k1+2k2的值為0. - 20 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!