(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何 第2講 橢圓、雙曲線、拋物線學(xué)案 文 新人教A版
《(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何 第2講 橢圓、雙曲線、拋物線學(xué)案 文 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何 第2講 橢圓、雙曲線、拋物線學(xué)案 文 新人教A版(16頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第2講 橢圓、雙曲線、拋物線 [做真題] 1.(2019·高考全國(guó)卷Ⅱ)若拋物線y2=2px(p>0)的焦點(diǎn)是橢圓+=1的一個(gè)焦點(diǎn),則p=( ) A.2 B.3 C.4 D.8 解析:選D.依題意得=,解得p=8,故選D. 2.(2019·高考全國(guó)卷Ⅰ)雙曲線C:-=1(a>0,b>0)的一條漸近線的傾斜角為130°,則C的離心率為( ) A.2sin 40° B.2cos 40° C. D. 解析:選D.依題意知,-=tan 130°=tan(130°-180°)=-tan 50°,兩邊平方得=tan250°=e2-1,e2=1+t
2、an250°=,又e>1,所以e=,選D. 3.(2016·高考全國(guó)卷Ⅱ)設(shè)F為拋物線C:y2=4x的焦點(diǎn),曲線y=(k>0)與C交于點(diǎn)P,PF⊥x軸,則k=( ) A. B.1 C. D.2 解析:選D.易知拋物線的焦點(diǎn)為F(1,0),設(shè)P(xP,yP),由PF⊥x軸可得xP=1,代入拋物線方程得yP=2(-2舍去),把P(1,2)代入曲線y=(k>0)得k=2. 4.(2019·高考全國(guó)卷Ⅲ)已知F是雙曲線C:-=1的一個(gè)焦點(diǎn),點(diǎn)P在C上,O為坐標(biāo)原點(diǎn).若|OP|=|OF|,則△OPF的面積為( ) A. B. C. D. 解析:選B.因?yàn)閏2=a2+b
3、2=9,所以|OP|=|OF|=3.設(shè)點(diǎn)P的坐標(biāo)為(x,y),則x2+y2=9,把x2=9-y2代入雙曲線方程得|y|=,所以S△OPF=|OF|·|yP|=.故選B. 5.(一題多解)(2018·高考全國(guó)卷Ⅲ)已知雙曲線C:-=1(a>0,b>0)的離心率為,則點(diǎn)(4,0)到C的漸近線的距離為( ) A. B.2 C. D.2 解析:選D.法一:由離心率e==,得c=a,又b2=c2-a2,得b=a,所以雙曲線C的漸近線方程為y=±x.由點(diǎn)到直線的距離公式,得點(diǎn)(4,0)到C的漸近線的距離為=2.故選D. 法二:離心率e=的雙曲線是等軸雙曲線,其漸近線方程是y=±x,由點(diǎn)
4、到直線的距離公式得點(diǎn)(4,0)到C的漸近線的距離為=2.故選D. [明考情] 圓錐曲線的標(biāo)準(zhǔn)方程與幾何性質(zhì)一直是高考的命題熱點(diǎn),其中求解圓錐曲線的標(biāo)準(zhǔn)方程,直線與橢圓、直線與拋物線的位置關(guān)系是高考解答題的??純?nèi)容,離心率問(wèn)題、雙曲線的漸近線問(wèn)題等常出現(xiàn)在選擇題、填空題中. 圓錐曲線的定義及標(biāo)準(zhǔn)方程(綜合型) [知識(shí)整合] 名稱 橢圓 雙曲線 拋物線 定義 |PF1|+|PF2|= 2a(2a>|F1F2|) ||PF1|-|PF2||=2a(0<2a<|F1F2|) |PF|=|PM|,點(diǎn)F不在直線 l上,PM⊥l于M 標(biāo)準(zhǔn)方程 +=1 (a>
5、b>0) -=1 (a>0,b>0) y2=2px(p>0) 圖形 [典型例題] (1)(2019·廣東六校第一次聯(lián)考)已知雙曲線-=1(a>0,b>0)的左焦點(diǎn)為F,離心率為,若經(jīng)過(guò)F和P(0,4)兩點(diǎn)的直線平行于雙曲線的一條漸近線,則雙曲線的方程為( ) A.x2-y2=1 B.-=1 C.-=1 D.-=1 (2)(2019·高考全國(guó)卷Ⅰ)已知橢圓C的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),過(guò)F2的直線與C交于A,B兩點(diǎn).若|AF2|=2|F2B|,|AB|=|BF1|,則C的方程為( ) A.+y2=1 B.+=1 C.+
6、=1 D.+=1 【解析】 (1)由題意,得雙曲線的左焦點(diǎn)為F(-c,0).由離心率e==,得c=a,c2=2a2=a2+b2,即a=b,所以雙曲線的漸近線方程為y=±x,則經(jīng)過(guò)F和P(0,4)兩點(diǎn)的直線的斜率k==1,得c=4,所以a=b=2,所以雙曲線的方程為-=1,故選D. (2)設(shè)橢圓的方程為+=1(a>b>0),連接F1A,令|F2B|=m,則|AF2|=2m,|BF1|=3m.由橢圓的定義知,4m=2a,得m=,故|F2A|=a=|F1A|,則點(diǎn)A為橢圓C的上頂點(diǎn)或下頂點(diǎn).令∠OAF2=θ(O為坐標(biāo)原點(diǎn)),則sin θ=.在等腰三角形ABF1中,cos 2θ==,所以=1-
7、2()2,得a2=3.又c2=1,所以b2=a2-c2=2,橢圓C的方程為+=1.故選B. 【答案】 (1)D (2)B (1)圓錐曲線定義的應(yīng)用 ①已知橢圓、雙曲線上一點(diǎn)及焦點(diǎn),首先要考慮使用橢圓、雙曲線的定義求解. ②應(yīng)用拋物線的定義,靈活將拋物線上的點(diǎn)到焦點(diǎn)的距離與到準(zhǔn)線的距離相互轉(zhuǎn)化使問(wèn)題得解. (2)圓錐曲線方程的求法 求解圓錐曲線標(biāo)準(zhǔn)方程的方法是“先定型,后計(jì)算”. ①定型.就是指定類(lèi)型,也就是確定圓錐曲線的焦點(diǎn)位置,從而設(shè)出標(biāo)準(zhǔn)方程. ②計(jì)算.即利用待定系數(shù)法求出方程中的a2,b2或p.另外,當(dāng)焦點(diǎn)位置無(wú)法確定時(shí),拋物線常設(shè)為y2=2ax或x2=2ay(a≠0
8、),橢圓常設(shè)為mx2+ny2=1(m>0,n>0),雙曲線常設(shè)為mx2-ny2=1(mn>0). [對(duì)點(diǎn)訓(xùn)練] 1.已知拋物線y2=2px(p>0)上一點(diǎn)M到焦點(diǎn)F的距離等于2p,則直線MF的斜率為( ) A.± B.±1 C.± D.± 解析:選A.設(shè)M(x,y),由題意知F,由拋物線的定義,可知x+=2p,故x=,由y2=2p×,知y=±p.當(dāng)M時(shí),kMF==,當(dāng)M時(shí),kMF==-,故kMF=±.故選A. 2.在平面直角坐標(biāo)系xOy中,已知雙曲線C:-=1(a>0,b>0)的離心率為,從雙曲線C的右焦點(diǎn)F引漸近線的垂線,垂足為A,若△AFO的面積為1,
9、則雙曲線C的方程為( ) A.-=1 B.-y2=1 C.-=1 D.x2-=1 解析:選D.因?yàn)殡p曲線C的右焦點(diǎn)F到漸近線的距離|FA|=b,|OA|=a,所以ab=2,又雙曲線C的離心率為,所以 =,即b2=4a2,解得a2=1,b2=4,所以雙曲線C的方程為x2-=1,故選D. 3.已知O為坐標(biāo)原點(diǎn),設(shè)F1,F(xiàn)2分別是雙曲線x2-y2=1的左、右焦點(diǎn),P為雙曲線左支上任意一點(diǎn),過(guò)點(diǎn)F1作∠F1PF2的平分線的垂線,垂足為H,則|OH|=( ) A.1 B.2 C.4 D. 解析:選A.如圖所示,延長(zhǎng)F1H交PF2于點(diǎn)Q,由PH為∠F1PF2的平分線及PH
10、⊥F1Q,可知|PF1|=|PQ|.根據(jù)雙曲線的定義,得|PF2|-|PF1|=2,即|PF2|-|PQ|=2,從而|QF2|=2.在△F1QF2中,易知OH為中位線,則|OH|=1. 圓錐曲線的幾何性質(zhì)(綜合型) [知識(shí)整合] 橢圓、雙曲線中,a,b,c之間的關(guān)系 (1)在橢圓中:a2=b2+c2,離心率為e== . (2)在雙曲線中:c2=a2+b2,離心率為e== . 雙曲線-=1(a>0,b>0)的漸近線方程為y=±x.注意離心率e與漸近線的斜率的關(guān)系. [典型例題] (1)P是橢圓+=1(a>b>0)上的一點(diǎn),A為左頂點(diǎn),F(xiàn)為右焦點(diǎn),PF⊥x軸,
11、若tan∠PAF=,則橢圓的離心率e為( ) A. B. C. D. (2)(一題多解)(2019·東北四市聯(lián)合體模擬(一))已知矩形ABCD,AB=12,BC=5,則以A,B為焦點(diǎn),且過(guò)C,D兩點(diǎn)的雙曲線的離心率為_(kāi)_____. 【解析】 (1)如圖, 不妨設(shè)點(diǎn)P在第一象限,因?yàn)镻F⊥x軸,所以xP=c,將xP=c代入橢圓方程得yP=,即|PF|=,則tan∠PAF===,結(jié)合b2=a2-c2,整理得2c2+ac-a2=0,兩邊同時(shí)除以a2得2e2+e-1=0,解得e=或e=-1(舍去).故選D. (2)通解:取AB的中點(diǎn)O為坐標(biāo)原點(diǎn),線段AB所
12、在直線為x軸,線段AB的垂直平分線為y軸,建立如圖所示的平面直角坐標(biāo)系,設(shè)雙曲線的方程為-=1(a>0,b>0),則焦距2c=12,所以c=6,將點(diǎn)C(6,5)代入雙曲線方程,得-=1①,又因?yàn)閍2+b2=62②,由①②解得a=4,b=2,所以雙曲線的離心率e===. 優(yōu)解:設(shè)雙曲線的實(shí)半軸長(zhǎng)為a,虛半軸長(zhǎng)為b,則根據(jù)雙曲線的性質(zhì)得c=6,=5,所以a2+b2=36,b2=5a,即a2+5a-36=0,解得a=4或a=-9(舍去),所以雙曲線的離心率e===. 【答案】 (1)D (2) (1)橢圓、雙曲線的離心率(或范圍)的求法 求橢圓、雙曲線的離心率或離心率的范圍,關(guān)鍵是根據(jù)已
13、知條件確定a,b,c的等量關(guān)系或不等關(guān)系,然后把b用a,c代換,求的值. (2)雙曲線的漸近線的求法及用法 ①求法:把雙曲線標(biāo)準(zhǔn)方程等號(hào)右邊的1改為零,分解因式可得. ②用法:(i)可得或的值. (ii)利用漸近線方程設(shè)所求雙曲線的方程. [對(duì)點(diǎn)訓(xùn)練] 1.(2019·福建省質(zhì)量檢查)已知雙曲線C的中心在坐標(biāo)原點(diǎn),一個(gè)焦點(diǎn)(,0)到漸近線的距離等于2,則C的漸近線方程為( ) A.y=±x B.y=±x C.y=±x D.y=±2x 解析:選D.設(shè)雙曲線C的方程為-=1(a>0,b>0),則由題意得c=.雙曲線C的漸近線方程為y=±x,即bx±ay=0,所以=2
14、,又c2=a2+b2=5,所以b=2,所以a==1,所以雙曲線C的漸近線方程為y=±2x,故選D.
2.已知雙曲線-=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線的右支上,且|PF1|=4|PF2|,則雙曲線的離心率的取值范圍是( )
A.(,2] B.(1,]
C.(1,2] D.[,+∞)
解析:選B.由|PF1|=4|PF2|,得|PF2|==≥c-a,故c≤+a=,則e=≤,又因?yàn)殡p曲線的離心率e>1,所以1 15、
如圖,設(shè)△AOB的邊長(zhǎng)為a,則A(a,a),因?yàn)辄c(diǎn)A在拋物線y2=3x上,所以a2=3×a,所以a=6.
答案:6
直線與圓錐曲線(綜合型)
[知識(shí)整合]
直線與圓錐曲線位置關(guān)系與“Δ”的關(guān)系
將直線方程與圓錐曲線方程聯(lián)立,消去一個(gè)變量(如y)得到方程Ax2+Bx+C=0.
①若A=0,則:
圓錐曲線可能為雙曲線或拋物線,此時(shí)直線與圓錐曲線只有一個(gè)交點(diǎn).
②若A≠0,則:
當(dāng)Δ>0時(shí),直線與圓錐曲線有兩個(gè)交點(diǎn)(相交);當(dāng)Δ=0時(shí),直線與圓錐曲線有一個(gè)交點(diǎn)(相切);當(dāng)Δ<0時(shí),直線與圓錐曲線沒(méi)有交點(diǎn)(相離).
直線與圓錐曲線相交時(shí)的弦長(zhǎng)
設(shè) 16、而不求,根據(jù)根與系數(shù)的關(guān)系,進(jìn)行整體代入,即當(dāng)直線與圓錐曲線交于點(diǎn)A(x1,y1),B(x2,y2)時(shí),|AB|=·|x1-x2|=|y1-y2|,
其中|x1-x2|=.
[典型例題]
已知O為坐標(biāo)原點(diǎn),點(diǎn)R(0,2),F(xiàn)是拋物線C:x2=2py(p>0)的焦點(diǎn),|RF|=3|OF|.
(1)求拋物線C的方程;
(2)過(guò)點(diǎn)R的直線l與拋物線C相交于A,B兩點(diǎn),與直線y=-2交于點(diǎn)M,拋物線C在點(diǎn)A,B處的切線分別記為l1,l2,l1與l2交于點(diǎn)N,若△MON是等腰三角形,求直線l的方程.
【解】 (1)因?yàn)镕是拋物線C:x2=2py(p>0)的焦點(diǎn),
所以點(diǎn)F的坐標(biāo)為.
因 17、為點(diǎn)R(0,2),|RF|=3|OF|,所以2-=3×,
解得p=1.
所以拋物線C的方程為x2=2y.
(2)依題意知,直線l的斜率存在,設(shè)直線l的方程為y=kx+2(k≠0),
由解得所以M.
由消去y并整理得,x2-2kx-4=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=2k,①
x1x2=-4.②
對(duì)y=求導(dǎo),得y′=x,
則拋物線C在點(diǎn)A處的切線l1的方程為y-y1=x1(x-x1).
由于點(diǎn)A在拋物線C上,則y1=,所以l1的方程為y=x1x-.③
同理可得l2的方程為y=x2x-.④
由①②③④得
即點(diǎn)N的坐標(biāo)為(k,-2).
所以kOM 18、·kON=×(-)=-1,則OM⊥ON.
又△MON是等腰三角形,
所以|OM|=|ON|,
即+4=k2+4,解得k=±2.
所以直線l的方程為y=2x+2或y=-2x+2.
解決直線與圓錐曲線位置關(guān)系問(wèn)題的步驟
(1)設(shè)方程及點(diǎn)的坐標(biāo).
(2)聯(lián)立直線方程與曲線方程得方程組,消元得方程(注意二次項(xiàng)系數(shù)是否為零).
(3)利用根與系數(shù)的關(guān)系及判別式.
(4)結(jié)合已知條件、中點(diǎn)坐標(biāo)公式、斜率公式及弦長(zhǎng)公式求解.
[對(duì)點(diǎn)訓(xùn)練]
1.過(guò)點(diǎn)M(1,1)作斜率為-的直線與橢圓C:+=1(a>b>0)相交于A,B兩點(diǎn),若M是線段AB的中點(diǎn),則橢圓C的離心率等于( )
A 19、. B.
C. D.
解析:選B.設(shè)A(x1,y1),B(x2,y2),
則+=1,+=1,
兩式相減得+=0,
變形得-=,即-=-,=.
所以,e===.
2.(2019·成都市第二次診斷性檢測(cè))已知橢圓C:+=1(a>b>0)的短軸長(zhǎng)為4,離心率為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,左、右頂點(diǎn)分別為A,B,點(diǎn)M,N為橢圓C上位于x軸上方的兩點(diǎn),且F1M∥F2N,直線F1M的斜率為2,記直線AM,BN的斜率分別為k1,k2,求3k1+2k2的值.
解:(1)由題意,得2b=4,=.
又a2-c2=b2,所 20、以a=3,b=2,c=1.
所以橢圓C的標(biāo)準(zhǔn)方程為+=1.
(2)由(1)可知A(-3,0),B(3,0),F(xiàn)1(-1,0).
由題意得,直線F1M的方程為y=2(x+1).
記直線F1M與橢圓C的另一個(gè)交點(diǎn)為M′.設(shè)M(x1,y1)(y1>0),M′(x2,y2).
因?yàn)镕1M∥F2N,所以根據(jù)對(duì)稱性,得N(-x2,-y2).
聯(lián)立得,消去y,得14x2+27x+9=0.
由題意知x1>x2,所以x1=-,x2=-,
k1===,k2===-,
所以3k1+2k2=3×+2×=0,即3k1+2k2的值為0.
一、選擇題
1.(2019·高考北京卷)已知橢圓+=1(a 21、>b>0)的離心率為,則( )
A.a(chǎn)2=2b2 B.3a2=4b2
C.a(chǎn)=2b D.3a=4b
解析:選B.由題意得,=,所以=,又a2=b2+c2,所以=,=,所以4b2=3a2.故選B.
2.以橢圓上一點(diǎn)和兩個(gè)焦點(diǎn)為頂點(diǎn)的三角形的面積的最大值為1,則橢圓長(zhǎng)軸長(zhǎng)的最小值為( )
A.1 B.
C.2 D.2
解析:選D.設(shè)a,b,c分別為橢圓的長(zhǎng)半軸長(zhǎng)、短半軸長(zhǎng)、半焦距,依題意知,×2cb=1?bc=1,2a=2≥2=2,當(dāng)且僅當(dāng)b=c=1時(shí),等號(hào)成立.故選D.
3.若點(diǎn)P為拋物線y=2x2上的動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),則|PF|的最小值為( 22、 )
A.2 B.
C. D.
解析:選D.由題意知x2=y(tǒng),則F(0,),設(shè)P(x0,2x),則|PF|==
=2x+,
所以當(dāng)x=0時(shí),|PF|min=.
4.(2019·高考天津卷)已知拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線為l.若l與雙曲線-=1(a>0,b>0)的兩條漸近線分別交于點(diǎn)A和點(diǎn)B,且|AB|=4|OF|(O為原點(diǎn)),則雙曲線的離心率為( )
A. B.
C. 2 D.
解析:選D.由題意知F(1,0),l:x=-1,雙曲線的漸近線方程為y=±x,則|AB|=4|OF|=4,而|AB|=2×,所以=2,所以e====,故選D.
5.(一題多解)( 23、2019·高考全國(guó)卷Ⅱ)設(shè)F為雙曲線C:-=1(a>0,b>0)的右焦點(diǎn),O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與圓x2+y2=a2交于P,Q兩點(diǎn).若|PQ|=|OF|,則C的離心率為( )
A. B.
C.2 D.
解析:選A.通解:依題意,記F(c,0),則以O(shè)F為直徑的圓的方程為+y2=,將圓+y2=與圓x2+y2=a2的方程相減得cx=a2,即x=,所以點(diǎn)P,Q的橫坐標(biāo)均為.由于PQ是圓x2+y2=a2的一條弦,因此+=a2,即+=a2,即=a2=,所以c2=2ab,即a2+b2-2ab=(a-b)2=0,所以a=b,因此C的離心率e==,故選A.
優(yōu)解一:記F(c,0).連 24、接OP,PF,則OP⊥PF,所以S△OPF=|OP|·|PF|=|OF|·|PQ|,即a·=c·c,即c2=2ab,即a2+b2-2ab=(a-b)2=0,所以a=b,因此C的離心率e= =,故選A.
優(yōu)解二:記F(c,0).依題意,PQ是以O(shè)F為直徑的圓的一條弦,因此OF垂直平分PQ.又|PQ|=|OF|,因此PQ是該圓與OF垂直的直徑,所以∠FOP=45°,點(diǎn)P的橫坐標(biāo)為,縱坐標(biāo)的絕對(duì)值為,于是有×=a,即e==,即C的離心率為,故選A.
6.已知直線l:y=kx+2過(guò)雙曲線C:-=1(a>0,b>0)的左焦點(diǎn)F和虛軸的上端點(diǎn)B(0,b),且與圓x2+y2=8交于點(diǎn)M,N,若|MN|≥ 25、2,則雙曲線的離心率e的取值范圍是( )
A.(1,] B.(1,]
C.[,+∞) D.[,+∞)
解析:選C.設(shè)圓心到直線l的距離為d(d>0),因?yàn)閨MN|≥2,所以2≥2,即0 26、2b,則雙曲線的方程為_(kāi)_____.
解析:根據(jù)對(duì)稱性,不妨設(shè)A在第一象限,A(x,y),所以?
所以xy=·=?b2=12,故雙曲線的方程為-=1.
答案:-=1
8.已知拋物線C:y2=2px(p>0)的準(zhǔn)線l,過(guò)M(1,0)且斜率為的直線與l相交于點(diǎn)A,與C的一個(gè)交點(diǎn)為點(diǎn)B,若=,則p=________.
解析:設(shè)直線AB:y=x-,代入y2=2px
得:3x2+(-6-2p)x+3=0,
又因?yàn)椋?,即M為A,B的中點(diǎn),
所以xB+(-)=2,即xB=2+,得p2+4p-12=0,
解得p=2,p=-6(舍去).
答案:2
9.(2019·昆明市質(zhì)量檢測(cè))已知拋物線 27、y2=4x上一點(diǎn)P到準(zhǔn)線的距離為d1,到直線l:4x-3y+11=0的距離為d2,則d1+d2的最小值為_(kāi)_______.
解析:如圖,設(shè)拋物線的準(zhǔn)線為m,焦點(diǎn)為F,分別過(guò)點(diǎn)P,F(xiàn)作PA⊥m,PM⊥l,F(xiàn)N⊥l,垂足分別為A,M,N.連接PF,因?yàn)辄c(diǎn)P在拋物線上,所以|PA|=|PF|,所以(d1+d2)min=(|PF|+|PM|)min=|FN|.點(diǎn)F(1,0)到直線l的距離|FN|==3,所以(d1+d2)min=3.
答案:3
三、解答題
10.(2019·長(zhǎng)春市質(zhì)量監(jiān)測(cè)(二))已知橢圓C:+=1(a>b>0)的中心是坐標(biāo)原點(diǎn)O,左、右焦點(diǎn)分別為F1,F(xiàn)2,設(shè)P是橢圓C上一 28、點(diǎn),滿足PF2⊥x軸,|PF2|=,橢圓C的離心率為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓C的左焦點(diǎn)且傾斜角為45°的直線l與橢圓C相交于A,B兩點(diǎn),求△AOB的面積.
解:(1)由題意知,離心率e==,|PF2|==,得a=2,b=1,所以橢圓C的標(biāo)準(zhǔn)方程為+y2=1.
(2)由條件可知F1(-,0),直線l:y=x+,聯(lián)立直線l和橢圓C的方程,得,消去y得5x2+8x+8=0,設(shè)A(x1,y1),B(x2,y2),則x1+x2=-,x1·x2=,所以|y1-y2|=|x1-x2|==,所以S△AOB=·|y1-y2|·|OF1|=.
11.(2019·高考全國(guó)卷Ⅰ)已知拋物 29、線C:y2=3x的焦點(diǎn)為F,斜率為的直線l與C的交點(diǎn)為A,B,與x軸的交點(diǎn)為P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若=3,求|AB|.
解:設(shè)直線l:y=x+t,A(x1,y1),B(x2,y2).
(1)由題設(shè)得F,故|AF|+|BF|=x1+x2+,由題設(shè)可得x1+x2=.
由可得9x2+12(t-1)x+4t2=0,則x1+x2=-.
從而-=,得t=-.
所以l的方程為y=x-.
(2)由=3可得y1=-3y2.
由可得y2-2y+2t=0.
所以y1+y2=2.從而-3y2+y2=2,故y2=-1,y1=3.
代入C的方程得x1=3,x2=. 30、
故|AB|=.
12.已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為,其中一個(gè)頂點(diǎn)是拋物線x2=-4y的焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過(guò)點(diǎn)P(2,1)的直線l與橢圓C在第一象限相切于點(diǎn)M,求直線l的方程和點(diǎn)M的坐標(biāo).
解:(1)設(shè)橢圓C的方程為+=1(a>b>0),
由題意得b=,=,
解得a=2,c=1.
故橢圓C的標(biāo)準(zhǔn)方程為+=1.
(2)因?yàn)檫^(guò)點(diǎn)P(2,1)的直線l與橢圓C在第一象限相切,所以直線l的斜率存在,
故可設(shè)直線l的方程為y=k(x-2)+1(k≠0).
由
得(3+4k2)x2-8k(2k-1)x+16k2-16k-8=0.①
因?yàn)橹本€l與橢圓C相切,
所以Δ=[-8k(2k-1)]2-4(3+4k2)(16k2-16k-8)=0.
整理,得2k+1=0,
解得k=-.
所以直線l的方程為y=-(x-2)+1=-x+2.將k=-代入①式,可以解得M點(diǎn)的橫坐標(biāo)為1,故切點(diǎn)M的坐標(biāo)為.
- 16 -
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)備采購(gòu)常用的四種評(píng)標(biāo)方法
- 車(chē)間員工管理須知(應(yīng)知應(yīng)會(huì))
- 某公司設(shè)備維護(hù)保養(yǎng)工作規(guī)程
- 某企業(yè)潔凈車(chē)間人員進(jìn)出管理規(guī)程
- 企業(yè)管理制度之5S管理的八個(gè)口訣
- 標(biāo)準(zhǔn)化班前會(huì)的探索及意義
- 某企業(yè)內(nèi)審員考試試題含答案
- 某公司環(huán)境保護(hù)考核管理制度
- 現(xiàn)場(chǎng)管理的定義
- 員工培訓(xùn)程序
- 管理制度之生產(chǎn)廠長(zhǎng)的職責(zé)與工作標(biāo)準(zhǔn)
- 某公司各級(jí)專業(yè)人員環(huán)保職責(zé)
- 企業(yè)管理制度:5S推進(jìn)與改善工具
- XXX公司環(huán)境風(fēng)險(xiǎn)排查及隱患整改制度
- 生產(chǎn)車(chē)間基層管理要點(diǎn)及建議