《(江蘇專用)2018-2019學(xué)年高中數(shù)學(xué) 第二章 圓錐曲線與方程 2.5 圓錐曲線的共同性質(zhì)學(xué)案 蘇教版選修1-1》由會(huì)員分享,可在線閱讀,更多相關(guān)《(江蘇專用)2018-2019學(xué)年高中數(shù)學(xué) 第二章 圓錐曲線與方程 2.5 圓錐曲線的共同性質(zhì)學(xué)案 蘇教版選修1-1(7頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
2.5 圓錐曲線的共同性質(zhì)
學(xué)習(xí)目標(biāo):1.了解圓錐曲線的統(tǒng)一定義,掌握根據(jù)標(biāo)準(zhǔn)方程求圓錐曲線的準(zhǔn)線方程的方法.(重點(diǎn)) 2.能用坐標(biāo)法解決一些與圓錐曲線有關(guān)的簡(jiǎn)單幾何問題.(難點(diǎn))
[自 主 預(yù) 習(xí)·探 新 知]
1.圓錐曲線的共同性質(zhì):
圓錐曲線上的點(diǎn)到一個(gè)定點(diǎn)F和到一條定直線l(F不在定直線l上)的距離之比是一個(gè)常數(shù)e.
這個(gè)常數(shù)e叫做圓錐曲線的離心率,定點(diǎn)F就是圓錐曲線的焦點(diǎn),定直線l就是該圓錐曲線的準(zhǔn)線.
2.圓錐曲線離心率的范圍:
(1)橢圓的離心率滿足0<e<1,
(2)雙曲線的離心率滿足e>1,
(3)拋物線的離心率滿足e=1.
3.橢圓和雙曲線的準(zhǔn)線方程
2、:
根據(jù)圖形的對(duì)稱性可知,橢圓和雙曲線都有兩條準(zhǔn)線,對(duì)于中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓或雙曲線,準(zhǔn)線方程都是x=±.
[基礎(chǔ)自測(cè)]
1.判斷正誤:
(1)到定點(diǎn)F與定直線l的距離之比為常數(shù)的點(diǎn)的軌跡是圓錐曲線.( )
(2)離心率e=1時(shí)不表示圓錐曲線.( )
(3)橢圓的準(zhǔn)線為x=±(焦點(diǎn)在x軸上),雙曲線的準(zhǔn)線為x=±(焦點(diǎn)在x軸上).
【解析】 (1)×.定點(diǎn)F不在定直線l上時(shí)才是圓錐曲線.
(2)×.當(dāng)e=1時(shí)表示拋物線是圓錐曲線.
(3)×.雙曲線的準(zhǔn)線也是x=±.
【答案】 (1)× (2)× (3)×
2.離心率為,準(zhǔn)線為x=±4的橢圓方程為______
3、__.
【導(dǎo)學(xué)號(hào):95902149】
【解析】 由題意知a=2,c=1,b2=3,∴橢圓方程為+=1.
【答案】 +=1
[合 作 探 究·攻 重 難]
求焦點(diǎn)坐標(biāo)及準(zhǔn)線方程
求下列曲線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程:
(1)x2-y2=2;
(2)4y2+9x2=36;
(3)x2+4y=0;
(4)3x2-3y2=-2.
[思路探究] 把方程化為標(biāo)準(zhǔn)形式后,確定焦點(diǎn)的位置、利用公式求解.
【自主解答】 (1)化方程為標(biāo)準(zhǔn)形式:-=1.
焦點(diǎn)在x軸上,a2=2,b2=2,c2=4,c=2.
∴焦點(diǎn)為(±2,0),準(zhǔn)線方程為x=±=±1.
(2)化方程為標(biāo)準(zhǔn)形式:+
4、=1.
焦點(diǎn)在y軸上,a2=9,b2=4,c=.
∴焦點(diǎn)坐標(biāo)為(0,±),準(zhǔn)線方程為y=±=±.
(3)由方程x2=-4y知,曲線為拋物線,p=2,
開口向下,焦點(diǎn)為(0,-1),準(zhǔn)線為y=1.
(4)化方程為標(biāo)準(zhǔn)形式-=1,a2=,b2=,c==,故焦點(diǎn)為.
準(zhǔn)線方程為y=±=±=±.
[規(guī)律方法]
1.已知圓錐曲線方程求焦點(diǎn)坐標(biāo)、準(zhǔn)線方程的一般思路是:首先確定圓錐曲線的類型,其次確定其標(biāo)準(zhǔn)方程的形式,然后確定相關(guān)的參數(shù)值a,b,c或p,最后根據(jù)方程的特征寫出相應(yīng)的焦點(diǎn)坐標(biāo)、準(zhǔn)線方程.
2.注意:橢圓、雙曲線有兩條準(zhǔn)線,而拋物線只有一條準(zhǔn)線,應(yīng)區(qū)別對(duì)待.
[跟蹤訓(xùn)練]
5、
1.求下列圓錐曲線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程:
(1)3x2+4y2=12;(2)2x2-y2=4.
【導(dǎo)學(xué)號(hào):95902150】
【解】 (1)化方程為標(biāo)準(zhǔn)形式:+=1.
焦點(diǎn)在x軸上,a2=4,b2=3,c2=1,c=1.
∴焦點(diǎn)坐標(biāo)為(±1,0),準(zhǔn)線方程為x=±=±4.
(2)化方程為標(biāo)準(zhǔn)形式:-=1.
焦點(diǎn)在x軸上,a2=2,b2=4,c2=6,c=.
∴焦點(diǎn)坐標(biāo)為(±,0),準(zhǔn)線方程為x=±=±=±.
利用圓錐曲線的定義求距離
雙曲線-=1上有一點(diǎn)P,它到右準(zhǔn)線的距離為,求它到左焦點(diǎn)的距離.
[思路探究] 首先判定點(diǎn)P在雙曲線的左支還是右支上,然后利用性質(zhì)
6、把到準(zhǔn)線的距離轉(zhuǎn)化為到焦點(diǎn)的距離求解.
【自主解答】 雙曲線-=1的左準(zhǔn)線和右準(zhǔn)線分別為x=-和x=,若點(diǎn)P在雙曲線的左支上,則點(diǎn)P到右準(zhǔn)線的最小距離為-(-3)=>,故點(diǎn)P不可能在左支上,而在右支上,所以點(diǎn)P到右焦點(diǎn)的距離為e=,再根據(jù)雙曲線的定義知PF1-PF2=6,即PF1=6+PF2=6+=.
即點(diǎn)P到左焦點(diǎn)的距離為.
[規(guī)律方法] 解決這類圓錐曲線上點(diǎn)到焦點(diǎn)和準(zhǔn)線的距離問題的一般思路有兩種:(1)先利用統(tǒng)一定義進(jìn)行曲線上點(diǎn)到焦點(diǎn)與相應(yīng)準(zhǔn)線距離之間的相互轉(zhuǎn)化,再利用對(duì)應(yīng)的圓錐曲線定義進(jìn)行曲線上點(diǎn)到兩不同焦點(diǎn)距離之間的轉(zhuǎn)化來解決;(2)把思路(1)的兩步過程交換先后順序來解決.
7、[跟蹤訓(xùn)練]
2.橢圓+=1上有一點(diǎn)P,它到橢圓的左準(zhǔn)線的距離為,求點(diǎn)P到橢圓的右焦點(diǎn)的距離.
【解】 橢圓+=1中,a2=25,b2=16,則a=5,c=3,故離心率為e=.
由圓錐曲線的性質(zhì)得點(diǎn)P到橢圓的左焦點(diǎn)的距離為e=,再根據(jù)橢圓的定義得,P到右焦點(diǎn)的距離為2a-=10-=.
利用圓錐曲線的定義求最值
[探究問題]
1.根據(jù)橢圓(雙曲線)的共同性質(zhì),橢圓(雙曲線)上一點(diǎn)P到其焦點(diǎn)F的距離PF,與點(diǎn)P到對(duì)應(yīng)準(zhǔn)線的距離d有什么關(guān)系?
【提示】 =e,即PF=de(e為橢圓或雙曲線的離心率).
2.設(shè)橢圓+=1內(nèi)一點(diǎn)A(1,1),P為橢圓上一點(diǎn),過P作橢圓的準(zhǔn)線x=4的垂
8、線,垂足為D,則PA+PD的最小值是什么?
【提示】 過A作直線x=4的垂線交橢圓于P,垂足為D,則PA+PD最小,最小值為AD=4-1=3.
3.設(shè)橢圓+=1外一點(diǎn)M(1,3),F(xiàn)為其右焦點(diǎn),P為橢圓上一點(diǎn),P到橢圓的準(zhǔn)線x=4的距離為PD,則PA+PD的最小值是什么?
【提示】 易知橢圓的離心率是e=,由=,得PF=PD,故PA+PD=PA+PF≥AF=3.即PA+PD的最小值是3.
已知橢圓+=1內(nèi)有一點(diǎn)M(1,2),F(xiàn)是橢圓在y軸正半軸上的一個(gè)焦點(diǎn),在橢圓上求一點(diǎn)P,使得MP+3PF的值最小.
【導(dǎo)學(xué)號(hào):95902151】
[思路探究] 因?yàn)闄E圓離心率為,∴=(d為P到
9、相應(yīng)準(zhǔn)線的距離),∴3PF=d,將MP+3PF轉(zhuǎn)化為MP+d.
【自主解答】 設(shè)P點(diǎn)坐標(biāo)為(x0,y0),P到F對(duì)應(yīng)準(zhǔn)線的距離為d,
由方程知a2=9,a=3,b2=8,c2=1,∴e=,
∴=,∴3PF=d,∴MP+3PF=MP+d.
當(dāng)MP與準(zhǔn)線l垂直時(shí)MP+d最小.
此時(shí)P點(diǎn)的橫坐標(biāo)為x0=1,將x0=1代入橢圓方程+=1,得y0=.
∴P點(diǎn)坐標(biāo)為,最小距離為-2=9-2=7.即MP+3PF的最小值為7.
[規(guī)律方法] 求距離和的最小值的關(guān)鍵在于把折線變成直線,此過程需借助于圓錐曲線的統(tǒng)一定義進(jìn)行等價(jià)轉(zhuǎn)化,體現(xiàn)了數(shù)形結(jié)合與等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想.
[跟蹤訓(xùn)練]
3.如圖
10、2-5-1所示,已知F是雙曲線-=1的左焦點(diǎn),定點(diǎn)A的坐標(biāo)為(3,1),P是雙曲線右支上的動(dòng)點(diǎn),則PF+PA的最小值為多少?
圖2-5-1
【解】 由-=1知a=2,c=4,e=2.設(shè)點(diǎn)M是點(diǎn)P在左準(zhǔn)線上的射影.
則PM是P到左準(zhǔn)線x=-1的距離,則=2.
所以PF=PM,所以PF+PA=PM+PA.
顯然當(dāng)A,P,M三點(diǎn)共線時(shí),PF+PA的值最小,
即PF+PA的最小值為點(diǎn)A到雙曲線左準(zhǔn)線的距離:3+=3+=4.故PF+PA的最小值為4.
[構(gòu)建·體系]
[當(dāng) 堂 達(dá) 標(biāo)·固 雙 基]
1.橢圓+=1的準(zhǔn)線方程是________.
【解析】 由方程可知a2=3,
11、b2=2,c2=1,∴c=1,則準(zhǔn)線方程為x=±=±3.
【答案】 x=±3
2.在平面直角坐標(biāo)系xOy中,已知雙曲線-=1的一條準(zhǔn)線的方程為x=3,則實(shí)數(shù)a的值是__________.
【導(dǎo)學(xué)號(hào):95902152】
【解析】 由方程可得c=,∴x==3,解得a=12或a=-3(舍),故a=12.
【答案】 12
3.若橢圓的焦點(diǎn)坐標(biāo)為(1,0),準(zhǔn)線方程是x=12,則該橢圓的方程是________.
【解析】 易知橢圓的焦點(diǎn)在x軸上,且c=1,故準(zhǔn)線方程是x==a2=12,則b2=a2-c2=11,故橢圓方程是+=1.
【答案】 +=1
4.橢圓+=1上一點(diǎn)P到其焦點(diǎn)的距離為2,則點(diǎn)P到對(duì)應(yīng)的準(zhǔn)線的距離為________.
【解析】 由題意知a=2,c=1,∴e=,所以p到準(zhǔn)線的距離為2÷=4.
【答案】 4
5.橢圓+=1上有一點(diǎn)P,它到橢圓的左準(zhǔn)線的距離為10,求點(diǎn)P到橢圓的右焦點(diǎn)的距離.
【導(dǎo)學(xué)號(hào):95902153】
【解析】 橢圓+=1中,a2=100,b2=36,則a=10,c==8,故離心率為e=.
根據(jù)圓錐曲線的統(tǒng)一定義得,點(diǎn)P到橢圓的左焦點(diǎn)的距離為10e=8.
再根據(jù)橢圓的定義得,點(diǎn)P到橢圓的右焦點(diǎn)的距離為20-8=12.
7