(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第三部分 教材知識 重點(diǎn)再現(xiàn) 回顧8 解析幾何學(xué)案 文 新人教A版
《(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第三部分 教材知識 重點(diǎn)再現(xiàn) 回顧8 解析幾何學(xué)案 文 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第三部分 教材知識 重點(diǎn)再現(xiàn) 回顧8 解析幾何學(xué)案 文 新人教A版(10頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、回顧8 解析幾何 [必記知識] 直線方程的五種形式 名稱 方程的形式 常數(shù)的幾何意義 適用范圍 點(diǎn)斜式 y-y0= k(x-x0) (x0,y0)是直線上一定點(diǎn),k是斜率 不垂直于x軸 斜截式 y=kx+b k是斜率,b是直線在y軸上的截距 不垂直于x軸 兩點(diǎn)式 = (x1,y1),(x2,y2)是直線上兩定點(diǎn) 不垂直于x軸和y軸 截距式 +=1 a是直線在x軸上的非零截距,b是直線在y軸上的非零截距 不垂直于x軸和y軸,且不過原點(diǎn) 一般式 Ax+By+C =0(A,B不同 時(shí)為零) A,B都不為零時(shí),斜率為-,在x軸上的截距為-,在y
2、軸上的截距為- 任何位置的直線 圓的四種方程 (1)圓的標(biāo)準(zhǔn)方程:(x-a)2+(y-b)2=r2(r>0). (2)圓的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0). (3)圓的參數(shù)方程:(θ為參數(shù)). (4)圓的直徑式方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0(圓的直徑的端點(diǎn)是A(x1,y1),B(x2,y2)). 直線與圓的位置關(guān)系 直線l:Ax+By+C=0和圓C:(x-a)2+(y-b)2=r2(r>0)有相交、相離、相切三種情況.可從代數(shù)和幾何兩個(gè)方面來判斷: (1)代數(shù)方法(判斷直線與圓的方程聯(lián)立所得方程組的解的情況):
3、Δ>0?相交;Δ<0?相離;Δ=0?相切.
(2)幾何方法(比較圓心到直線的距離與半徑的大小):設(shè)圓心到直線的距離為d,則d 4、r2
兩組不同的實(shí)數(shù)解
2
內(nèi)切
d=|r1-r2|(r1≠r2)
一組實(shí)數(shù)解
1
內(nèi)含
0≤d<|r1-r2|(r1≠r2)
無解
0
橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì)
標(biāo)準(zhǔn)方程
+=1(a>b>0)
+=1(a>b>0)
圖形
幾何
性質(zhì)
范圍
-a≤x≤a,
-b≤y≤b
-b≤x≤b,
-a≤y≤a
對稱性
對稱軸:x軸,y軸;對稱中心:原點(diǎn)
焦點(diǎn)
F1(-c,0),F(xiàn)2(c,0)
F1(0,-c),F(xiàn)2(0,c)
頂點(diǎn)
A1(-a,0),A2(a,0);
B1(0,-b),B2(0,b)
A1(0,-a),A2(0, 5、a);
B1(-b,0),B2(b,0)
軸
線段A1A2,B1B2分別是橢圓的長軸和短軸;長軸長為2a,短軸長為2b
焦距
|F1F2|=2c
離心率
焦距與長軸長的比值:e∈(0,1)
a,b,c
的關(guān)系
c2=a2-b2
雙曲線的標(biāo)準(zhǔn)方程及幾何性質(zhì)
標(biāo)準(zhǔn)方程
-=1
(a>0,b>0)
-=1
(a>0,b>0)
圖形
幾何性質(zhì)
范圍
|x|≥a,y∈R
|y|≥a,x∈R
對稱性
對稱軸:x軸,y軸;對稱中心:原點(diǎn)
焦點(diǎn)
F1(-c,0),F(xiàn)2(c,0)
F1(0,-c),F(xiàn)2(0,c)
頂點(diǎn)
A1( 6、-a,0),A2(a,0)
A1(0,-a),A2(0,a)
幾何性質(zhì)
軸
線段A1A2,B1B2分別是雙曲線的實(shí)軸和虛軸;實(shí)軸長為2a,虛軸長為2b
焦距
|F1F2|=2c
離心率
焦距與實(shí)軸長的比值:e∈(1,+∞)
漸近線
y=±x
y=±x
a,b,c的關(guān)系
a2=c2-b2
拋物線的標(biāo)準(zhǔn)方程及幾何性質(zhì)
標(biāo)準(zhǔn)方程
y2=2px
(p>0)
y2=-2px
(p>0)
x2=2py
(p>0)
x2=-2py
(p>0)
圖形
幾何性質(zhì)
對稱軸
x軸
y軸
頂點(diǎn)
O(0,0)
焦點(diǎn)
F
F
F
7、F
準(zhǔn)線
方程
x=-
x=
y=-
y=
范圍
x≥0,y∈R
x≤0,y∈R
y≥0,x∈R
y≤0,x∈R
離心率
e=1
[必會結(jié)論]
常見的直線系方程
(1)過定點(diǎn)P(x0,y0)的直線系方程:A(x-x0)+B(y-y0)=0(A2+B2≠0),還可以表示為y-y0=k(x-x0)(斜率不存在時(shí)可為x=x0).
(2)平行于直線Ax+By+C=0的直線系方程:Ax+By+λ=0(λ≠C).
(3)垂直于直線Ax+By+C=0的直線系方程:Bx-Ay+λ=0.
(4)過兩條已知直線A1x+B1y+C1=0,A2x+B2y+C2=0的交點(diǎn)的直 8、線系方程:A1x+B1y+C1+λ(A2x+B2y+C2)=0(不包括直線A2x+B2y+C2=0).
與圓的切線有關(guān)的結(jié)論
(1)過圓x2+y2=r2上一點(diǎn)P(x0,y0)的切線方程為x0x+y0y=r2.
(2)過圓(x-a)2+(y-b)2=r2上一點(diǎn)P(x0,y0)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2.
(3)過圓x2+y2=r2外一點(diǎn)P(x0,y0)作圓的兩條切線,切點(diǎn)為A,B,則過A、B兩點(diǎn)的直線方程為x0x+y0y=r2.
(4)若圓的方程為(x-a)2+(y-b)2=r2(r>0),則過圓外一點(diǎn)P(x0,y0)的切線長d=.
雙曲線的 9、方程與漸近線方程的關(guān)系
(1)若雙曲線的方程為-=1,則漸近線的方程為-=0,即y=±x.
(2)若漸近線的方程為y=±x,即±=0,則雙曲線的方程可設(shè)為-=λ.
(3)若所求雙曲線與雙曲線-=1有公共漸近線,其方程可設(shè)為-=λ(λ>0,焦點(diǎn)在x軸上;λ<0,焦點(diǎn)在y軸上).
(4)焦點(diǎn)到漸近線的距離總是b.
拋物線焦點(diǎn)弦的常用結(jié)論
設(shè)AB是過拋物線y2=2px(p>0)焦點(diǎn)F的弦,若A(x1,y1),B(x2,y2),α為直線AB的傾斜角,則
(1)焦半徑|AF|=x1+=,|BF|=x2+=.
(2)x1x2=,y1y2=-p2.
(3)弦長|AB|=x1+x2+p=. 10、
(4)+=.
(5)以弦AB為直徑的圓與準(zhǔn)線相切.
(6)S△OAB=(O為拋物線的頂點(diǎn)).
[必練習(xí)題]
1.(一題多解)(2019·高考北京卷)已知雙曲線-y2=1(a>0)的離心率是,則a=( )
A. B. 4
C. 2 D.
解析:選D.通解:由雙曲線方程可知b2=1,所以c==,所以e===,解得a=,故選D.
優(yōu)解:由e=,e2=1+,b2=1,得5=1+,得a=,故選D.
2.(一題多解)(2019·石家莊市模擬(一))已知圓C截兩坐標(biāo)軸所得弦長相等,且圓C過點(diǎn)(-1,0)和(2,3),則圓C的半徑為( )
A.8 B. 11、2
C.5 D.
解析:選D.通解:設(shè)圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2(r>0),因?yàn)閳AC經(jīng)過點(diǎn)(-1,0)和(2,3),所以,所以a+b-2=0 ①,又圓C截兩坐標(biāo)軸所得弦長相等,所以|a|=|b|?、?,由①②得a=b=1,所以圓C的半徑為,故選D.
優(yōu)解:設(shè)圓C過點(diǎn)M(-1,0)和N(2,3),所以圓心C在線段MN的垂直平分線y=-x+2上,又圓C截兩坐標(biāo)軸所得弦長相等,所以圓心C到兩坐標(biāo)的距離相等,所以圓心在直線y=±x上,因?yàn)橹本€y=-x和直線y=-x+2平行,所以圓心C為直線y=x和直線y=-x+2的交點(diǎn)(1,1),所以圓C的半徑為,故選D.
3.(2019 12、·合肥市第二次質(zhì)量檢測)已知雙曲線-=1(a>0,b>0)的一條漸近線方程為y=2x,且經(jīng)過點(diǎn)P(,4),則雙曲線的方程是( )
A.-=1 B.-=1
C.-=1 D.x2-=1
解析:選C.因?yàn)殡p曲線的一條漸近線方程為y=2x,所以=2 ①.又雙曲線過點(diǎn)P(,4),所以-=1 ②.①②聯(lián)立,解得a=,b=2,所以雙曲線的方程為-=1,故選C.
4.(2019·成都市第二次診斷性檢測)已知a∈R且為常數(shù),圓C:x2+2x+y2-2ay=0,過圓C內(nèi)一點(diǎn)(1,2)的直線l與圓C相交于A,B兩點(diǎn).當(dāng)∠ACB最小時(shí),直線l的方程為2x-y=0,則a的值為( )
A.2 B 13、.3
C.4 D.5
解析:選B.圓的方程配方,得(x+1)2+(y-a)2=1+a2,圓心為C(-1,a),當(dāng)弦AB長度最短時(shí),∠ACB最小,此時(shí)圓心C與定點(diǎn)(1,2)的連線和直線2x-y=0垂直,所以×2=-1,a=3.
5.(2019·武漢部分學(xué)校調(diào)研)如圖,拋物線E:x2=4y與M:x2+(y-1)2=16交于A,B兩點(diǎn),點(diǎn)P為劣弧上不同于A,B的一個(gè)動點(diǎn),平行于y軸的直線PN交拋物線E于點(diǎn)N,則△PMN的周長的取值范圍是( )
A.(6,12) B.(8,10)
C.(6,10) D.(8,12)
解析:選B.由題意可得拋物線E的焦點(diǎn)為(0,1),圓M的 14、圓心為(0,1),半徑為4,所以圓心M(0,1)為拋物線的焦點(diǎn),故|NM|等于點(diǎn)N到準(zhǔn)線y=-1的距離,又PN∥y軸,故|PN|+|NM|等于點(diǎn)P到準(zhǔn)線y=-1的距離.由,得y=3,又點(diǎn)P為劣弧上不同于A,B的一個(gè)動點(diǎn),所以點(diǎn)P到準(zhǔn)線y=-1的距離的取值范圍是(4,6),又|PM|=4,所以△PMN的周長的取值范圍是(8,10),故選B.
6.(一題多解)(2019·高考全國卷Ⅲ)設(shè)F1,F(xiàn)2為橢圓C:+=1的兩個(gè)焦點(diǎn),M為C上一點(diǎn)且在第一象限.若△MF1F2為等腰三角形,則M的坐標(biāo)為____________.
解析:通解:由橢圓C:+=1,得c==4,不妨設(shè)F1,F(xiàn)2分別為左、右焦點(diǎn),則 15、由題意知|MF1|=|F1F2|=2c=8,于是由橢圓的定義得|MF1|+|MF2|=12,所以|MF2|=12-|MF1|=4,易知△MF1F2的底邊MF2上的高h(yuǎn)===2,所以|MF2|·h=|F1F2|·yM,即×4×2=×8×yM,解得yM=,代入橢圓方程得xM=-3(舍去)或xM=3,故點(diǎn)M的坐標(biāo)為(3,).
優(yōu)解:不妨設(shè)F1,F(xiàn)2分別為左、右焦點(diǎn),則由題意,得|MF1|=|F1F2|=8,由橢圓的焦半徑公式得|MF1|=exM+6=xM+6=8,解得xM=3,代入橢圓方程得yM=,故點(diǎn)M的坐標(biāo)為(3,).
答案:(3,)
7.雙曲線-=1(a>0,b>0)的漸近線為正方形OA 16、BC的邊OA,OC所在的直線,點(diǎn)B為該雙曲線的焦點(diǎn).若正方形OABC的邊長為2,則a=________.
解析:雙曲線-=1的漸近線方程為y=±x,由已知可得兩條漸近線方程互相垂直,由雙曲線的對稱性可得=1.又正方形OABC的邊長為2,所以c=2,所以a2+b2=c2=(2)2,解得a=2.
答案:2
8.(2019·成都市第二次診斷性檢測)在平面直角坐標(biāo)系xOy中,定義兩點(diǎn)A(x1,y1),B(x2,y2)間的折線距離為d(A,B)=|x1-x2|+|y1-y2|.已知點(diǎn)O(0,0),C(x,y),d(O,C)=1,則的取值范圍是________.
解析:
根據(jù)定義有:d(O, 17、C)=|0-x|+|0-y|=1,
即|x|+|y|=1,該方程等價(jià)于或或或,畫出圖形如圖所示,=表示點(diǎn)(x,y)與點(diǎn)(0,0)的距離,所以∈.
答案:
9.(2019·高考天津卷)設(shè)橢圓+=1(a>b>0)的左焦點(diǎn)為F,上頂點(diǎn)為B.已知橢圓的短軸長為4,離心率為.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)P在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)M為直線PB與x軸的交點(diǎn),點(diǎn)N在y軸的負(fù)半軸上.若|ON|=|OF|(O為原點(diǎn)),且OP⊥MN,求直線PB的斜率.
解:(1)設(shè)橢圓的半焦距為c,依題意,2b=4,=,又a2=b2+c2,可得a=,b=2,c=1.
所以橢圓的方程為+=1.
(2 18、)由題意,設(shè)P(xP,yP)(xP≠0),M(xM,0).設(shè)直線PB的斜率為k(k≠0),又B(0,2),則直線PB的方程為y=kx+2,與橢圓方程聯(lián)立得整理得(4+5k2)x2+20kx=0,可得xP=-,代入y=kx+2得yP=,進(jìn)而直線OP的斜率=.在y=kx+2中,令y=0,得xM=-.由題意得N(0,-1),所以直線MN的斜率為-.由OP⊥MN,得·=-1,化簡得k2=,從而k=±.
所以,直線PB的斜率為或-.
10.(2019·武漢市調(diào)研測試)已知橢圓Γ:+=1(a>b>0)經(jīng)過點(diǎn)M(-2,1),且右焦點(diǎn)F(,0).
(1)求橢圓Γ的標(biāo)準(zhǔn)方程;
(2)過N(1,0)且斜率 19、存在的直線AB交橢圓Γ于A,B兩點(diǎn),記t=·,若t的最大值和最小值分別為t1,t2,求t1+t2的值.
解:(1)由橢圓+=1的右焦點(diǎn)為(,0),知a2-b2=3,即b2=a2-3,則+=1,a2>3.
又橢圓過點(diǎn)M(-2,1),所以+=1,又a2>3,所以a2=6.
所以橢圓Γ的標(biāo)準(zhǔn)方程為+=1.
(2)設(shè)直線AB的方程為y=k(x-1),A(x1,y1),B(x2,y2),
由得x2+2k2(x-1)2=6,即(1+2k2)x2-4k2x+2k2-6=0,
因?yàn)辄c(diǎn)N(1,0)在橢圓內(nèi)部,所以Δ>0,
所以,
則t=·=(x1+2)(x2+2)+(y1-1)(y2-1)
=x1x2+2(x1+x2)+4+(kx1-k-1)(kx2-k-1)
=(1+k2)x1x2+(2-k2-k)(x1+x2)+k2+2k+5③,
將①②代入③得,
t=(1+k2)·+(2-k2-k)·+k2+2k+5,
所以t=,
所以(15-2t)k2+2k-1-t=0,k∈R,
則Δ1=22+4(15-2t)(1+t)≥0,
所以(2t-15)(t+1)-1≤0,即2t2-13t-16≤0,
由題意知t1,t2是2t2-13t-16=0的兩根,所以t1+t2=.
- 10 -
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)備采購常用的四種評標(biāo)方法
- 車間員工管理須知(應(yīng)知應(yīng)會)
- 某公司設(shè)備維護(hù)保養(yǎng)工作規(guī)程
- 某企業(yè)潔凈車間人員進(jìn)出管理規(guī)程
- 企業(yè)管理制度之5S管理的八個(gè)口訣
- 標(biāo)準(zhǔn)化班前會的探索及意義
- 某企業(yè)內(nèi)審員考試試題含答案
- 某公司環(huán)境保護(hù)考核管理制度
- 現(xiàn)場管理的定義
- 員工培訓(xùn)程序
- 管理制度之生產(chǎn)廠長的職責(zé)與工作標(biāo)準(zhǔn)
- 某公司各級專業(yè)人員環(huán)保職責(zé)
- 企業(yè)管理制度:5S推進(jìn)與改善工具
- XXX公司環(huán)境風(fēng)險(xiǎn)排查及隱患整改制度
- 生產(chǎn)車間基層管理要點(diǎn)及建議