(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 數(shù)列 第1講 等差數(shù)列與等比數(shù)列學(xué)案 理

上傳人:彩*** 文檔編號:105919791 上傳時間:2022-06-12 格式:DOC 頁數(shù):15 大?。?26.50KB
收藏 版權(quán)申訴 舉報 下載
(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 數(shù)列 第1講 等差數(shù)列與等比數(shù)列學(xué)案 理_第1頁
第1頁 / 共15頁
(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 數(shù)列 第1講 等差數(shù)列與等比數(shù)列學(xué)案 理_第2頁
第2頁 / 共15頁
(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 數(shù)列 第1講 等差數(shù)列與等比數(shù)列學(xué)案 理_第3頁
第3頁 / 共15頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 數(shù)列 第1講 等差數(shù)列與等比數(shù)列學(xué)案 理》由會員分享,可在線閱讀,更多相關(guān)《(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 數(shù)列 第1講 等差數(shù)列與等比數(shù)列學(xué)案 理(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第1講 等差數(shù)列與等比數(shù)列 [考情考向分析] 1.等差、等比數(shù)列基本量和性質(zhì)的考查是高考熱點,經(jīng)常以小題形式出現(xiàn).2.數(shù)列求和及數(shù)列與函數(shù)、不等式的綜合問題是高考考查的重點,考查分析問題、解決問題的綜合能力. 熱點一 等差數(shù)列、等比數(shù)列的運算 1.通項公式 等差數(shù)列:an=a1+(n-1)d; 等比數(shù)列:an=a1·qn-1. 2.求和公式 等差數(shù)列:Sn==na1+d; 等比數(shù)列:Sn==(q≠1). 3.性質(zhì) 若m+n=p+q, 在等差數(shù)列中am+an=ap+aq; 在等比數(shù)列中am·an=ap·aq. 例1 (1)(2018·全國Ⅰ)記Sn為等差數(shù)列{a

2、n}的前n項和,若3S3=S2+S4,a1=2,則a5等于(  ) A.-12 B.-10 C.10 D.12 答案 B 解析 設(shè)等差數(shù)列{an}的公差為d,由3S3=S2+S4, 得3=2a1+×d+4a1+×d,將a1=2代入上式,解得d=-3, 故a5=a1+(5-1)d=2+4×(-3)=-10. 故選B. (2)(2018·杭州質(zhì)檢)設(shè)各項均為正數(shù)的等比數(shù)列{an}中,若S4=80,S2=8,則公比q=________,a5=________. 答案 3 162 解析 由題意可得,S4-S2=q2S2,代入得q2=9. ∵等比數(shù)列{an}的各項均為正數(shù),

3、 ∴q=3,解得a1=2,故a5=162. 思維升華 在進行等差(比)數(shù)列項與和的運算時,若條件和結(jié)論間的聯(lián)系不明顯,則均可化成關(guān)于a1和d(q)的方程組求解,但要注意消元法及整體計算,以減少計算量. 跟蹤演練1 (1)設(shè)公比為q(q>0)的等比數(shù)列{an}的前n項和為Sn,若S2=3a2+2,S4=3a4+2,則a1等于(  ) A.-2 B.-1 C. D. 答案 B 解析 S4-S2=a3+a4=3a4-3a2, 即3a2+a3-2a4=0,即3a2+a2q-2a2q2=0, 即2q2-q-3=0,解得q=-1(舍)或q=, 當(dāng)q=時,代入S2=3a2+2, 得

4、a1+a1q=3a1q+2,解得a1=-1. (2)(2018·全國Ⅲ)等比數(shù)列{an}中,a1=1,a5=4a3. ①求{an}的通項公式; ②記Sn為{an}的前n項和,若Sm=63,求m. 解?、僭O(shè){an}的公比為q,由題設(shè)得an=qn-1. 由已知得q4=4q2,解得q=0(舍去),q=-2或q=2. 故an=(-2)n-1或an=2n-1(n∈N*). ②若an=(-2)n-1,則Sn=. 由Sm=63得(-2)m=-188,此方程沒有正整數(shù)解. 若an=2n-1,則Sn=2n-1. 由Sm=63得2m=64,解得m=6. 綜上,m=6. 熱點二 等差數(shù)列、等

5、比數(shù)列的判定與證明 證明數(shù)列{an}是等差數(shù)列或等比數(shù)列的證明方法 (1)證明數(shù)列{an}是等差數(shù)列的兩種基本方法: ①利用定義,證明an+1-an(n∈N*)為一常數(shù); ②利用等差中項,即證明2an=an-1+an+1(n≥2,n∈N*). (2)證明數(shù)列{an}是等比數(shù)列的兩種基本方法: ①利用定義,證明(n∈N*)為一常數(shù); ②利用等比中項,即證明a=an-1an+1(n≥2,n∈N*). 例2 已知數(shù)列{an},{bn},其中a1=3,b1=-1,且滿足an=(3an-1-bn-1),bn=-(an-1-3bn-1),n∈N*,n≥2. (1)求證:數(shù)列{an-bn}

6、為等比數(shù)列; (2)求數(shù)列的前n項和Tn. (1)證明 an-bn=(3an-1-bn-1)-(an-1-3bn-1)=2(an-1-bn-1), 又a1-b1=3-(-1)=4, 所以{an-bn}是首項為4,公比為2的等比數(shù)列. (2)解 由(1)知,an-bn=2n+1,① 又an+bn=(3an-1-bn-1)+(an-1-3bn-1)=an-1+bn-1, 又a1+b1=3+(-1)=2, 所以{an+bn}為常數(shù)數(shù)列,an+bn=2,② 聯(lián)立①②得,an=2n+1, ==-, 所以Tn=++…+ =-=-(n∈N*). 思維升華 (1)判斷一個數(shù)列是等差(

7、比)數(shù)列,也可以利用通項公式及前n項和公式,但不能作為證明方法. (2)a=an-1an+1(n≥2)是數(shù)列{an}為等比數(shù)列的必要不充分條件,判斷時還要看各項是否為零. 跟蹤演練2 (2018·新余模擬)已知{an}是各項都為正數(shù)的數(shù)列,其前n項和為Sn,且Sn為an與的等差中項. (1)求證:數(shù)列{S}為等差數(shù)列; (2)求數(shù)列{an}的通項公式; (3)設(shè)bn=,求{bn}的前n項和Tn. (1)證明 由題意知2Sn=an+,即2Snan-a=1,(*) 當(dāng)n≥2時,有an=Sn-Sn-1,代入(*)式得 2Sn(Sn-Sn-1)-(Sn-Sn-1)2=1, 整理得S-

8、S=1(n≥2). 又當(dāng)n=1時,由(*)式可得a1=S1=1, ∴數(shù)列{S}是首項為1,公差為1的等差數(shù)列. (2)解 由(1)可得S=1+n-1=n, ∵數(shù)列{an}的各項都為正數(shù), ∴Sn=, ∴當(dāng)n≥2時,an=Sn-Sn-1=-, 又a1=S1=1滿足上式, ∴an=-(n∈N*). (3)解 由(2)得bn== =(-1)n(+), 當(dāng)n為奇數(shù)時, Tn=-1+(+1)-(+)+…+(+)-(+)=-, 當(dāng)n為偶數(shù)時, Tn=-1+(+1)-(+)+…-(+)+(+)=, ∴數(shù)列{bn}的前n項和Tn=(-1)n(n∈N*). 熱點三 等差數(shù)列、等比

9、數(shù)列的綜合問題 解決等差數(shù)列、等比數(shù)列的綜合問題,要從兩個數(shù)列的特征入手,理清它們的關(guān)系;數(shù)列與不等式、函數(shù)、方程的交匯問題,可以結(jié)合數(shù)列的單調(diào)性、最值求解. 例3 已知等差數(shù)列{an}的公差為-1,且a2+a7+a12=-6. (1)求數(shù)列{an}的通項公式an與其前n項和Sn; (2)將數(shù)列{an}的前4項抽去其中一項后,剩下三項按原來順序恰為等比數(shù)列{bn}的前3項,記{bn}的前n項和為Tn,若存在m∈N*,使得對任意n∈N*,總有Sn

10、*). (2)由題意知b1=4,b2=2,b3=1, 設(shè)等比數(shù)列{bn}的公比為q, 則q==, ∴Tm==8, ∵m隨m的增加而減少, ∴{Tm}為遞增數(shù)列,得4≤Tm<8. 又Sn==-(n2-9n) =-, 故(Sn)max=S4=S5=10, 若存在m∈N*,使得對任意n∈N*,總有Sn2.即實數(shù)λ的取值范圍為(2,+∞). 思維升華 (1)等差數(shù)列與等比數(shù)列交匯的問題,常用“基本量法”求解,但有時靈活地運用性質(zhì),可使運算簡便. (2)數(shù)列的項或前n項和可以看作關(guān)于n的函數(shù),然后利用函數(shù)的性質(zhì)求解數(shù)列問題. (3)數(shù)列中的

11、恒成立問題可以通過分離參數(shù),通過求數(shù)列的值域求解. 跟蹤演練3 已知數(shù)列{an}的前n項和為Sn,且Sn-1=3(an-1),n∈N*. (1)求數(shù)列{an}的通項公式; (2)設(shè)數(shù)列{bn}滿足an+1=,若bn≤t對于任意正整數(shù)n都成立,求實數(shù)t的取值范圍. 解 (1)由已知得Sn=3an-2,令n=1,得a1=1, 又an+1=Sn+1-Sn=3an+1-3an, 得an+1=an, 所以數(shù)列{an}是以1為首項,為公比的等比數(shù)列, 所以an=n-1(n∈N*). (2)由an+1=, 得bn==n-1 =n·n-1, 所以bn+1-bn=(n+1)·n-n·n-

12、1 =(2-n), 所以(bn)max=b2=b3=,所以t≥. 即t的取值范圍為. 真題體驗 1.(2017·全國Ⅰ改編)記Sn為等差數(shù)列{an}的前n項和.若a4+a5=24,S6=48,則{an}的公差為________. 答案 4 解析 設(shè){an}的公差為d, 由得 解得d=4. 2.(2017·浙江改編)已知等差數(shù)列{an}的公差為d,前n項和為Sn,則“d>0”是“S4+S6>2S5”的________條件. 答案 充要 解析 方法一 ∵數(shù)列{an}是公差為d的等差數(shù)列, ∴S4=4a1+6d,S5=5a1+10d,S6=6a1+15d, ∴S4+S

13、6=10a1+21d,2S5=10a1+20d. 若d>0,則21d>20d,10a1+21d>10a1+20d, 即S4+S6>2S5. 若S4+S6>2S5,則10a1+21d>10a1+20d, 即21d>20d, ∴d>0.∴“d>0”是“S4+S6>2S5”的充要條件. 方法二 ∵S4+S6>2S5?S4+S4+a5+a6>2(S4+a5)?a6>a5?a5+d>a5?d>0. ∴“d>0”是“S4+S6>2S5”的充要條件. 3.(2017·北京)若等差數(shù)列{an}和等比數(shù)列{bn}滿足a1=b1=-1,a4=b4=8,則=________. 答案 1 解析 設(shè)

14、等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q, 則由a4=a1+3d, 得d===3, 由b4=b1q3,得q3===-8, ∴q=-2. ∴===1. 4.(2017·江蘇)等比數(shù)列{an}的各項均為實數(shù),其前n項和為Sn,已知S3=,S6=,則a8=________. 答案 32 解析 設(shè){an}的首項為a1,公比為q, 則解得 所以a8=×27=25=32. 押題預(yù)測 1.設(shè)等差數(shù)列{an}的前n項和為Sn,且a1>0,a3+a10>0,a6a7<0,則滿足Sn>0的最大自然數(shù)n的值為(  ) A.6 B.7 C.12 D.13 押題依據(jù) 等差

15、數(shù)列的性質(zhì)和前n項和是數(shù)列最基本的知識點,也是高考的熱點,可以考查學(xué)生靈活變換的能力. 答案 C 解析 ∵a1>0,a6a7<0,∴a6>0,a7<0,等差數(shù)列的公差小于零,又a3+a10=a1+a12>0,a1+a13=2a7<0, ∴S12>0,S13<0, ∴滿足Sn>0的最大自然數(shù)n的值為12. 2.在等比數(shù)列{an}中,a3-3a2=2,且5a4為12a3和2a5的等差中項,則{an}的公比等于(  ) A.3 B.2或3 C.2 D.6 押題依據(jù) 等差數(shù)列、等比數(shù)列的綜合問題可反映知識運用的綜合性和靈活性,是高考出題的重點. 答案 C 解析 設(shè)公比為q,

16、5a4為12a3和2a5的等差中項,可得10a4=12a3+2a5,10a3q=12a3+2a3q2,得10q=12+2q2,解得q=2或3.又a3-3a2=2,所以a2q-3a2=2,即a2(q-3)=2,所以q=2. 3.已知各項都為正數(shù)的等比數(shù)列{an}滿足a7=a6+2a5,存在兩項am,an使得 =4a1,則+的最小值為(  ) A. B. C. D. 押題依據(jù) 本題在數(shù)列、方程、不等式的交匯處命題,綜合考查學(xué)生應(yīng)用數(shù)學(xué)的能力,是高考命題的方向. 答案 A 解析 由a7=a6+2a5,得a1q6=a1q5+2a1q4, 整理得q2-q-2=0, 解得q=2或q

17、=-1(不合題意,舍去), 又由=4a1,得aman=16a, 即a2m+n-2=16a,即有m+n-2=4, 亦即m+n=6,那么+=(m+n) =≥=, 當(dāng)且僅當(dāng)=,即n=2m=4時取等號. 4.定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(-∞,0)∪(0,+∞)上的如下函數(shù): ①f(x)=x2;②f(x)=2x;③f(x)=; ④f(x)=ln|x|. 則其中是“保等比數(shù)列函數(shù)”的f(x)的序號為(  ) A.①② B.③④ C.①③ D.②④

18、 押題依據(jù) 先定義一個新數(shù)列,然后要求根據(jù)定義的條件推斷這個新數(shù)列的一些性質(zhì)或者判斷一個數(shù)列是否屬于這類數(shù)列的問題是近年來高考中逐漸興起的一類問題,這類問題一般形式新穎,難度不大,常給人耳目一新的感覺. 答案 C 解析 由等比數(shù)列的性質(zhì)得,anan+2=a. ①f(an)f(an+2)=aa=(a)2=[f(an+1)]2; ②f(an)f(an+2)==≠=[f(an+1)]2; ③f(an)f(an+2)===[f(an+1)]2; ④f(an)f(an+2)=ln|an|ln|an+2|≠(ln|an+1|)2=[f(an+1)]2. A組 專題通關(guān) 1.(2018·

19、大慶質(zhì)檢)已知等差數(shù)列{an}中,a4=9,S4=24,則a7等于(  ) A.3 B.7 C.13 D.15 答案 D 解析 由于數(shù)列為等差數(shù)列,依題意得 解得d=2,所以a7=a4+3d=9+6=15. 2.已知等比數(shù)列{an}的首項為1,公比q≠-1,且a5+a4=3,則 等于(  ) A.-9 B.9 C.-81 D.81 答案 B 解析 根據(jù)題意可知=q2=3, 而==a5=a1·q4=1×32=9. 3.(2017·全國Ⅲ)等差數(shù)列{an}的首項為1,公差不為0.若a2,a3,a6成等比數(shù)列,則{an}的前6項和為(  ) A.-24 B

20、.-3 C.3 D.8 答案 A 解析 由已知條件可得a1=1,d≠0, 由a=a2a6,可得(1+2d)2=(1+d)(1+5d), 解得d=-2或d=0(舍). 所以S6=6×1+=-24. 4.一個等比數(shù)列的前三項的積為2,最后三項的積為4,且所有項的積為64,則該數(shù)列的項數(shù)是(  ) A.13 B.12 C.11 D.10 答案 B 解析 設(shè)等比數(shù)列為{an},其前n項積為Tn,由已知得a1a2a3=2,anan-1an-2=4,可得(a1an)3=2×4,a1an=2, ∵Tn=a1a2…an,∴T=(a1a2…an)2 =(a1an)(a2an-

21、1)…(ana1)=(a1an)n=2n=642=212, ∴n=12. 5.(2018·荊州質(zhì)檢)已知數(shù)列{an}滿足=25·5an,且a2+a4+a6=9,則(a5+a7+a9)等于(  ) A.-3 B.3 C.- D. 答案 A 解析 ∵=25·=, ∴an+1=an+2, ∴數(shù)列{an}是等差數(shù)列,且公差為2. ∵a2+a4+a6=9, ∴3a4=9,a4=3. ∴====-3. 6.(2018·吉林調(diào)研)已知等差數(shù)列{an}的公差不為0,a1=1,且a2,a4,a8成等比數(shù)列,設(shè){an}的前n項和為Sn,則Sn=________. 答案 (n∈N*)

22、 解析 設(shè)等差數(shù)列{an}的公差為d. ∵a2,a4,a8成等比數(shù)列, ∴a=a2·a8,即(a1+3d)2=(a1+d)·(a1+7d), ∴(1+3d)2=(1+d)·(1+7d), 解得d=1或d=0(舍). ∴Sn=na1+d=(n∈N*). 7.(2018·資陽模擬)等差數(shù)列{an}的前n項和為Sn,若a2=8,且Sn≤S7,則公差d的取值范圍是________. 答案  解析 ∵a2=8=a1+d, ∴a1=8-d, Sn=na1+d=(8-d)n+d =dn2+n, 對稱軸為n=-, ∵Sn≤S7,∴S7為Sn的最大值, 由二次函數(shù)的性質(zhì)可得, 得-

23、≤d≤-, 即d的取值范圍是. 8.已知數(shù)列{an}與(n∈N*)均為等差數(shù)列,且a1=2,則a1+2+3+…+n=________. 答案 2n+1-2 解析 設(shè)an=2+(n-1)d, 所以= =, 由于為等差數(shù)列, 所以其通項是一個關(guān)于n的一次函數(shù), 所以(d-2)2=0,∴d=2. 所以an=2+2(n-1)=2n,∴==2. 所以a1+2+3+…+n=21+22+…+2n==2n+1-2. 9.意大利數(shù)學(xué)家列昂那多·斐波那契以兔子繁殖為例,引入“兔子數(shù)列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,即F(1)=F(2)=1,

24、F(n)=F(n-1)+F(n-2)(n≥3,n∈N*),此數(shù)列在現(xiàn)代物理、準(zhǔn)晶體結(jié)構(gòu)、化學(xué)等領(lǐng)域都有著廣泛的應(yīng)用,若此數(shù)列被3整除后的余數(shù)構(gòu)成一個新數(shù)列,則b2 017=________. 答案 1 解析 由題意得引入“兔子數(shù)列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…, 此數(shù)列被3 整除后的余數(shù)構(gòu)成一個新數(shù)列為1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,…, 構(gòu)成以8項為周期的周期數(shù)列,所以b2 017=b1=1. 10.(2018·天津)設(shè){an}是等比數(shù)列,公比大于0,其前n項和為Sn(n∈N*),{bn}是等差數(shù)列.已知

25、a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6. (1)求{an}和{bn}的通項公式; (2)設(shè)數(shù)列{Sn}的前n項和為Tn(n∈N*), ①求Tn; ②證明:=-2(n∈N*). (1)解 設(shè)等比數(shù)列{an}的公比為q.由a1=1,a3=a2+2,可得q2-q-2=0.由q>0,可得q=2,故an=2n-1. 設(shè)等差數(shù)列{bn}的公差為d. 由a4=b3+b5,可得b1+3d=4. 由a5=b4+2b6,可得3b1+13d=16,從而b1=1,d=1, 故bn=n. 所以數(shù)列{an}的通項公式為an=2n-1(n∈N*),數(shù)列{bn}的通項公式為bn=n

26、(n∈N*). (2)①解 由(1)得Sn==2n-1,故 Tn=(2k-1)=k-n=-n =2n+1-n-2(n∈N*). ②證明 因為= ==-, 所以=++…+=-2(n∈N*). B組 能力提高 11.?dāng)?shù)列{an}是以a為首項,b為公比的等比數(shù)列,數(shù)列{bn}滿足bn=1+a1+a2+…+an(n=1,2,…),數(shù)列滿足cn=2+b1+b2+…+bn(n=1,2,…),若為等比數(shù)列,則a+b等于(  ) A. B.3 C. D.6 答案 B 解析 由題意知,當(dāng)b=1時,{cn}不是等比數(shù)列, 所以b≠1.由an=abn-1, 得bn=1+=1+-,

27、 則cn=2+n-· =2-+n+, 要使為等比數(shù)列,必有 得a+b=3. 12.已知數(shù)列{an}的前n項和為Sn,a1=15,且滿足an+1=an+4n2-16n+15,已知n,m∈N*,n>m,則Sn-Sm的最小值為(  ) A.- B.- C.-14 D.-28 答案 C 解析 根據(jù)題意可知 (2n-5)an+1=(2n-3)an+(2n-5)(2n-3), 式子的每一項都除以(2n-5)(2n-3), 可得=+1, 即-=1, 所以數(shù)列是以=-5為首項,以1為公差的等差數(shù)列, 所以=-5+(n-1)·1=n-6, 即an=(n-6)(2n-5),

28、由此可以判斷出a3,a4,a5這三項是負數(shù), 從而得到當(dāng)n=5,m=2時,Sn-Sm取得最小值, 且Sn-Sm=S5-S2=a3+a4+a5=-3-6-5=-14. 13.已知數(shù)列{an}滿足nan+2-(n+2)an=λ(n2+2n),其中a1=1,a2=2,若an

29、; 當(dāng)n為偶數(shù)時,=1+λ=λ+1, 所以an=λ+n. 當(dāng)n為奇數(shù)時,由an-2,若n=1,則λ∈R; 若n>1,則λ>-,所以λ≥0. 當(dāng)n為偶數(shù)時,由an-2,所以λ>-,即λ≥0. 綜上,λ的取值范圍為[0,+∞). 14.設(shè)等差數(shù)列{an}的前n項和為Sn,a=(a1,1),b=(1,a10),若a·b=24,且S11=143,數(shù)列{bn}的前n項和為Tn,且滿足=λTn-(a1-1)(n∈N*). (1)求數(shù)列{an}的通項公式及數(shù)列的前n項和Mn; (2

30、)是否存在非零實數(shù)λ,使得數(shù)列{bn}為等比數(shù)列?并說明理由. 解 (1)設(shè)數(shù)列{an}的公差為d, 由a=(a1,1),b=(1,a10),a·b=24, 得a1+a10=24,又S11=143,解得a1=3,d=2, 因此數(shù)列{an}的通項公式是an=2n+1(n∈N*), 所以==, 所以Mn= =(n∈N*). (2)因為=λTn-(a1-1)(n∈N*),且a1=3, 所以Tn=+, 當(dāng)n=1時,b1=; 當(dāng)n≥2時,bn=Tn-Tn-1=, 此時有=4,若{bn}是等比數(shù)列, 則有=4,而b1=,b2=,彼此相矛盾, 故不存在非零實數(shù)λ使數(shù)列{bn}為等比數(shù)列. 15

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!