《2022年高中物理 第三章 萬(wàn)有引力定律及其應(yīng)用 第2節(jié) 萬(wàn)有引力定律的應(yīng)用學(xué)案 粵教版必修2》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高中物理 第三章 萬(wàn)有引力定律及其應(yīng)用 第2節(jié) 萬(wàn)有引力定律的應(yīng)用學(xué)案 粵教版必修2(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高中物理 第三章 萬(wàn)有引力定律及其應(yīng)用 第2節(jié) 萬(wàn)有引力定律的應(yīng)用學(xué)案 粵教版必修2
一、學(xué)習(xí)目標(biāo)
1、會(huì)用萬(wàn)有引力定律計(jì)算天體的質(zhì)量與密度
2、知道三種宇宙速度含義與數(shù)值
二、學(xué)習(xí)重點(diǎn)難點(diǎn)
萬(wàn)有引力定律應(yīng)用的模型的建立:中心天體、行星或衛(wèi)星繞中心天體運(yùn)行
三、課前預(yù)習(xí)(自主探究)
1.分析天體運(yùn)動(dòng)的基本思路:把天體的運(yùn)動(dòng)看做是 ,所需的向心力由 提供,即 = = 。
2.(單選)對(duì)于萬(wàn)有引力定律的表達(dá)式,下列說(shuō)法中正確的是( )
A.公式中G為引力常量,它是由實(shí)驗(yàn)測(cè)得的,而不是人為規(guī)定的
B.當(dāng)
2、r趨于零時(shí),萬(wàn)有引力趨于無(wú)限大
C.m1、m2相等時(shí),兩物體受到的引力大小才相等
D.兩物體受到的引力總是大小相等、方向相反,是一對(duì)平衡力
課前自主預(yù)習(xí)答案:
1.勻速圓周運(yùn)動(dòng),萬(wàn)有引力,,, 2.A
四、課堂活動(dòng)
(1)小組合作交流
知識(shí)點(diǎn)1:天體質(zhì)量和密度的計(jì)算
卡文迪許把他自己的實(shí)驗(yàn)說(shuō)成是“稱地球的質(zhì)量”,他是根據(jù) “稱”地球的質(zhì)量的。天體質(zhì)量不可能直接稱量,但可以間接測(cè)量.天體衛(wèi)星做圓周運(yùn)動(dòng)所需的向心力由萬(wàn)有引力提供,即=m=mr,因此可得M= ,測(cè)出天體衛(wèi)星的環(huán)繞周期和環(huán)繞半徑即可計(jì)算天體質(zhì)量.
3、
重點(diǎn)歸納
1.基本方法:建立模型,把天體(或人造衛(wèi)星)的運(yùn)動(dòng)看成勻速圓周運(yùn)動(dòng),其所需向心力由萬(wàn)有引力提供.
2.解決天體圓周運(yùn)動(dòng)問(wèn)題的兩條思路
(1)在地面附近萬(wàn)有引力近似等于物體的重力, F引=mg,即G=mg,整理得
GM=gR2.
(2)天體運(yùn)動(dòng)都可以近似地看成勻速圓周運(yùn)動(dòng),其向心力由萬(wàn)有引力提供,即F引=F向
一般有以下幾種表達(dá)形式:
①G=m?、贕=mω2r?、跥=mr
3.天體質(zhì)量和密度的計(jì)算
(1)“g、R”計(jì)算法:利用天體表面的物體所受重力約等于萬(wàn)有引力.得:M=;
ρ=.
(2)“T、r”計(jì)算法:利用繞天體運(yùn)動(dòng)的衛(wèi)星所需向心力由萬(wàn)有引力提供,再結(jié)合勻
4、速圓周運(yùn)動(dòng)知識(shí).得:M=;ρ=(R表示天體半徑).
例1.已知太陽(yáng)光射到地面約需時(shí)間497S,試估算太陽(yáng)的質(zhì)量。
解析:應(yīng)用萬(wàn)有引力定律可以“稱重”天體的質(zhì)量,本題要求我們“稱量”太陽(yáng)的質(zhì)量,注意由光的傳播速度得出日地間距。
地球繞太陽(yáng)運(yùn)行的軌道半徑就是太陽(yáng)和地球之間的距離,這個(gè)距離是
m
地球繞太陽(yáng)運(yùn)行的周期為1年,即SS
設(shè)太陽(yáng)和地球的質(zhì)量分別為M和m,由于
故kg
點(diǎn)評(píng):求解天體質(zhì)量的兩個(gè)主要數(shù)據(jù),一是繞天體運(yùn)行的行星或衛(wèi)星的軌道半徑(r),二是運(yùn)行周期(T)。注意本題中運(yùn)行周期為隱含條件(地球公轉(zhuǎn)周期為1年)。
例2.“神舟六號(hào)”飛船在預(yù)定圓軌道上飛行,每繞地球一圈需
5、要時(shí)間為90 min,每圈飛行路程為L(zhǎng)=4.2×104 km.試根據(jù)以上數(shù)據(jù)估算地球的質(zhì)量和密度.(地球半徑R約為6.37×103 km,引力常量G取6.67×10-11 N·m2/kg2,結(jié)果保留兩位有效數(shù)字)
解:由L=2πr得r==6.69×103 km
由G=mr,得M===6.2×1024 kg
又由ρ=,V=πR3
得ρ===5.6×103 kg/m3.
知識(shí)點(diǎn)2:人造地球衛(wèi)星和宇宙速度
美國(guó)有部電影叫《光速俠》,是說(shuō)一個(gè)叫Daniel Light的家伙在一次事故后,發(fā)現(xiàn)自己擁有了能以光速奔跑的能力.
根據(jù)所學(xué)物理知識(shí)分析,如果光速俠要以光速?gòu)募~約跑到洛杉磯救
6、人, 能實(shí)現(xiàn)嗎?
答案:不可能實(shí)現(xiàn).因?yàn)楫?dāng)人或物體以大于第一宇宙速度的速度在地表運(yùn)動(dòng)時(shí),會(huì)脫離地表,到達(dá)外太空,即在地表運(yùn)動(dòng)的速度不能超過(guò)7.9 km/s.
重點(diǎn)歸納
1.人造地球衛(wèi)星的軌道
衛(wèi)星繞地球做勻速圓周運(yùn)動(dòng)時(shí),由地球?qū)λ娜f(wàn)有引力充當(dāng)向心力,地球?qū)πl(wèi)星的萬(wàn)有引力指向地心.而做勻速圓周運(yùn)動(dòng)的物體的向心力時(shí)刻指向它所做圓周運(yùn)動(dòng)的圓心.因此衛(wèi)星繞地球做勻速圓周運(yùn)動(dòng)的圓心必與地心重合.這樣就存在三類人造地球衛(wèi)星軌道(如圖所示):
(1)赤道軌道,衛(wèi)星軌道在赤道平面,衛(wèi)星始終處于赤道上方;
(2)極地軌道,衛(wèi)星軌道平面與赤道平面垂直,衛(wèi)星通過(guò)兩極上空;
(3)一般軌道,
7、衛(wèi)星軌道和赤道成一定角度.
2.人造衛(wèi)星的線速度、角速度、周期、加速度與半徑的關(guān)系
(1)由G=m得v=.即v∝,說(shuō)明衛(wèi)星的運(yùn)動(dòng)軌道半徑越大,其運(yùn)行線速度就越?。?
(2)由G=mω2r得ω=,即ω∝,說(shuō)明衛(wèi)星的運(yùn)動(dòng)軌道半徑越大,其角速度越?。?
(3)由G=mr得T=2π,即T∝,說(shuō)明衛(wèi)星的運(yùn)動(dòng)軌道半徑越大,其運(yùn)行周期越長(zhǎng).
(4)由G=ma得a=,即a∝,說(shuō)明衛(wèi)星的運(yùn)動(dòng)軌道半徑越大,其加速度越?。?
3.地球同步衛(wèi)星
(1)周期、角速度與地球自轉(zhuǎn)周期、角速度相同,T=24 h.
(2)軌道是確定的,地球同步衛(wèi)星的運(yùn)行軌道在赤道平面內(nèi).
(3)在赤道上空距地面高度有確定的值.
8、
由萬(wàn)有引力提供向心力得
G=m(2π/T)2(R+h),
解得h=-R=3.6×107 m.
4.三種宇宙速度
(1)第一宇宙速度(環(huán)繞速度):v1=7.9 km/s,是人造地球衛(wèi)星的最小發(fā)射速度,也是人造地球衛(wèi)星繞地球做圓周運(yùn)動(dòng)的最大速度.
(2)第二宇宙速度(脫離速度):v2=11.2 km/s,是使物體掙脫地球引力束縛的最小發(fā)射速度.
(3)第三宇宙速度(逃逸速度):v3=16.7km/s,是使物體掙脫太陽(yáng)引力束縛的最小發(fā)射速度.
(4)特別提醒:
①三種宇宙速度均指發(fā)射速度,不要誤認(rèn)為是環(huán)繞速度.
②任何星體都有對(duì)應(yīng)的宇宙速度.以上三種宇宙速度是對(duì)地球而言的.
9、例3.(雙選)如圖所示,T代表“天宮一號(hào)”飛行器,S代表“神舟八號(hào)”飛船,它們都繞地球做勻速圓周運(yùn)動(dòng),其軌道如圖中所示,則( )
A.T的周期大于S的周期
B.T的線速度大于S的線速度
C.T的向心加速度大于S的向心加速度
D.S和T的速度都小于環(huán)繞速度7.9 km/s
解析:由G=mr得T=2π,即T∝,說(shuō)明衛(wèi)星的運(yùn)動(dòng)軌道半徑越大,其運(yùn)行周期越長(zhǎng),故T的周期大于S的周期,A對(duì)。由G=m得v=.即v∝,說(shuō)明衛(wèi)星的運(yùn)動(dòng)軌道半徑越大,其運(yùn)行線速度就越小,故B錯(cuò),D對(duì)。由G=ma得a=,即a∝,說(shuō)明衛(wèi)星的運(yùn)動(dòng)軌道半徑越大,其加速度越小,故C錯(cuò)。答案:AD
方法技巧
雙星問(wèn)題:天文學(xué)家
10、將相距較近、僅在彼此的引力作用下運(yùn)行的兩顆恒星稱為雙星,雙星系統(tǒng)在銀河系中很普遍.利用雙星系統(tǒng)中兩顆恒星的運(yùn)動(dòng)特征可推算出它們的總質(zhì)量.雙星運(yùn)動(dòng)有以下幾個(gè)特點(diǎn):
1、角速度相同;
2、圓心相同,軌道半徑之和等于兩者間距r;
3、彼此之間的萬(wàn)有引力提供向心力.
練習(xí):兩顆靠得較近的天體叫雙星,它們以兩者重心連線上的某點(diǎn)為圓心做勻速圓周運(yùn)動(dòng),因而不至于因引力作用而吸引在一起,以下關(guān)于雙星的說(shuō)法中正確的是
A.它們做圓周運(yùn)動(dòng)的角速度相等 B.它們做圓周運(yùn)動(dòng)的線速度與其質(zhì)量成反比
C.它們所受向心力與其質(zhì)量成反比 D.它們做圓周運(yùn)動(dòng)的半徑與其質(zhì)量成反比
(2)課堂小測(cè)
宇航員站在某一星球表面上高H處,其中H?R,沿水平方向以某一初速度水平拋出一個(gè)小球,經(jīng)過(guò)時(shí)間t,小球落到星球表面,已知該星球的半徑為R,萬(wàn)有引力常量為G,求該星球的質(zhì)量和密度.
五、課外作業(yè)
六、課后反思