2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 專題突破練14 4.1~4.2組合練 文

上傳人:xt****7 文檔編號:106635901 上傳時(shí)間:2022-06-13 格式:DOC 頁數(shù):5 大?。?56KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 專題突破練14 4.1~4.2組合練 文_第1頁
第1頁 / 共5頁
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 專題突破練14 4.1~4.2組合練 文_第2頁
第2頁 / 共5頁
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 專題突破練14 4.1~4.2組合練 文_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 專題突破練14 4.1~4.2組合練 文》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 專題突破練14 4.1~4.2組合練 文(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 專題突破練14 4.1~4.2組合練 文 一、選擇題(共9小題,滿分45分) 1.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈 (  )                   A.1盞 B.3盞 C.5盞 D.9盞 2.(2018遼寧大連二模,理4)設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,S2=-1,S4=-5,則S6=(  ) A.-9 B.-21 C.-25 D.-63 3.已知等

2、差數(shù)列{an}的公差為2,若a2,a4,a8成等比數(shù)列,則{an}的前n項(xiàng)和Sn=(  ) A.n(n+1) B.n(n-1) C. D. 4.(2018河北唐山三模,理6)數(shù)列{an}的首項(xiàng)a1=1,對于任意m,n∈N*,有an+m=an+3m,則{an}前5項(xiàng)和S5= (  ) A.121 B.25 C.31 D.35 5.(2018山東濰坊二模,理4)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=-n2-n,則數(shù)列的前40項(xiàng)的和為 (  ) A. B.- C. D.- 6.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若Sm-1=-2,Sm=0,Sm+1=3,則m=(  ) A.3 B.

3、4 C.5 D.6 7.(2018吉林長春外國語學(xué)校二模,理8)已知數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則數(shù)列{}的前10項(xiàng)和為(  ) A.410-1 B.(210-1)2 C.(410-1) D.(210-1) 8.設(shè)等差數(shù)列{an}滿足3a8=5a15,且a1>0,Sn為其前n項(xiàng)和,則數(shù)列{Sn}的最大項(xiàng)為(  ) A.S23 B.S24 C.S25 D.S26 9.(2018全國高考必刷模擬一,文12)數(shù)列{an}滿足a1=,an+1-1=an(an-1)(n∈N*),Sn=+…+,則Sn的整數(shù)部分的所有可能值構(gòu)成的集合是(  ) A.{0,1,2} B.{0,1,2,

4、3} C.{1,2} D.{0,2} 二、填空題(共3小題,滿分15分) 10.(2018湖南衡陽一模,文15)已知數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=2an-2n,則Sn=     .? 11.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3,S9,S6成等差數(shù)列,且a2+a5=4,則a8的值為    .? 12.(2018遼寧撫順一模,文16)已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=Sn+2,則a9的值為     .? 三、解答題(共3個(gè)題,分別滿分為13分,13分,14分) 13.已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a3=9.

5、(1)求數(shù)列{an}的通項(xiàng)公式; (2)證明:+…+<1. 14.已知數(shù)列{an}的前n項(xiàng)和為Sn,且對任意正整數(shù)n,都有3an=2Sn+3成立. (1)求數(shù)列{an}的通項(xiàng)公式; (2)設(shè)bn=log3an,求數(shù)列{bn}的前n項(xiàng)和Tn. 15.(2018河北保定一模,文17)已知數(shù)列{an}滿足:2an=an+1+an-1(n≥2,n∈N*),且a1=1,a2=2. (1)求數(shù)列{an}的通項(xiàng)公式; (2)若數(shù)列{bn}滿足2anbn+1=an+1bn(n≥1,n∈N*

6、),且b1=1.求數(shù)列{bn}的通項(xiàng)公式,并求其前n項(xiàng)和Tn. 參考答案 專題突破練14 4.1~4.2組合練 1.B 解析 設(shè)塔的頂層共有x盞燈,則各層的燈數(shù)構(gòu)成一個(gè)公比為2的等比數(shù)列,由=381,可得x=3,故選B. 2.B 解析 由題意,S2=a1+a2=-1,S4-S2=a3+a4=(a1+a2)q2=-4,q2=4,S6=S2+S4q2=-1+(-5)×4=-21. 3.A 解析 ∵a2,a4,a8成等比數(shù)列,∴=a2·a8,即(a1+6)2=(a1+2)(a1+14),解得a1=2.∴Sn=na1+d=2n+n2-n=n2+n=

7、n(n+1).故選A. 4.D 解析 當(dāng)m=1時(shí),由an+m=an+3m,得an+1-an=3,∴數(shù)列{an}是首項(xiàng)a1=1,公差d=3的等差數(shù)列, ∴S5=5×1+×5×4×3=35. 5.D 解析 ∵Sn=-n2-n,∴a1=S1=-2. 當(dāng)n≥2時(shí),an=Sn-Sn-1=-n2-n+(n-1)2+(n-1)=-2n,a1=-2也滿足上式,則數(shù)列{an}的通項(xiàng)公式為an=-2n,=-,即數(shù)列的前40項(xiàng)的和為-+…+=-. 6.C 解析 ∵Sm-1=-2,Sm=0,Sm+1=3, ∴am=Sm-Sm-1=0-(-2)=2,am+1=Sm+1-Sm=3-0=3. ∴d=am+1-

8、am=3-2=1. ∵Sm=ma1+×1=0, ∴a1=-.又=a1+m×1=3,∴-+m=3.∴m=5.故選C. 7.C 解析 ∵Sn=2n-1,∴Sn+1=2n+1-1. ∴an+1=Sn+1-Sn=(2n+1-1)-(2n-1)=2n.∵a1=S1=2-1=1, ∴數(shù)列{an}的通項(xiàng)公式為an=2n-1, ∴=4n-1,∴所求值為(410-1),故選C. 8.C 解析 設(shè)等差數(shù)列{an}的公差為d, ∵3a8=5a15,∴3(a1+7d)=5(a1+14d),即2a1+49d=0. ∵a1>0,∴d<0, ∴等差數(shù)列{an}單調(diào)遞減. ∵Sn=na1+d=nd=(n

9、-25)2-d.∴當(dāng)n=25時(shí),數(shù)列{Sn}取得最大值,故選C. 9.A 解析 ∵a1=,an+1-1=an(an-1), ∴an+1-an=(an-1)2>0,∴an+1>an,因此數(shù)列{an}單調(diào)遞增. ∵an+1-1=an(an-1),∴, ∴. ∴Sn=+…++…+=3-.由an+1-1=an(an-1)(n∈N*),得a2-1=, ∴a2=,同理可得a3=,a4=.當(dāng)n=1時(shí),S1=3-,其整數(shù)部分為0, 當(dāng)n=2時(shí),S2=3-=3-=1+,其整數(shù)部分為1, 當(dāng)n=2時(shí),S3=3-=2+,其整數(shù)部分為2, 因數(shù)列{an}單調(diào)遞增,當(dāng)n>4時(shí),0<<1,所以當(dāng)n≥4時(shí)

10、,Sn=3-∈(2,3),所以Sn的整數(shù)部分的所有可能值構(gòu)成的集合是{0,1,2}. 10.n·2n 解析 ∵Sn=2an-2n=2(Sn-Sn-1)-2n,整理得Sn-2Sn-1=2n,等式兩邊同時(shí)除以2n,則=1. 又S1=2a1-2=a1,可得a1=S1=2,∴數(shù)列是首項(xiàng)為1, 公差為1的等差數(shù)列,所以=n, 所以Sn=n·2n. 11.2 解析 ∵等比數(shù)列{an}的前n項(xiàng)和為Sn,S3,S9,S6成等差數(shù)列, 且a2+a5=4, ∴ 解得a1q=8,q3=-, ∴a8=a1q7=(a1q)(q3)2=8×=2. 12.384 解析 當(dāng)n≥2時(shí),由an+1=Sn+2,

11、得an=Sn-1+2,兩式相減,得an+1-an=an,∴an+1=2an. 當(dāng)n=2時(shí),a2=S1+2=3,所以數(shù)列{an}中,當(dāng)n≥2時(shí),是以2為公比的等比數(shù)列,∴a9=a2×27=3×128=384. 13.(1)解 設(shè)等差數(shù)列{log2(an-1)}的公差為d.由a1=3,a3=9,得log22+2d=log28,即d=1. ∴l(xiāng)og2(an-1)=1+(n-1)×1=n, 即an=2n+1. (2)證明 ∵, ∴+…+ =+…+ ==1-<1. 14.解 (1)在3an=2Sn+3中,令n=1,得a1=3. 當(dāng)n≥2時(shí),3an=2Sn+3,① 3an-1=2Sn-1+3,② ①-②得an=3an-1, ∴數(shù)列{an}是以3為首項(xiàng),3為公比的等比數(shù)列,∴an=3n. (2)由(1)得bn=log3an=n, 數(shù)列{bn}的前n項(xiàng)和Tn=1+2+3+…+n=. 15.解 (1)由2an=an+1+an-1(n≥2,n∈N*),得數(shù)列{an}為等差數(shù)列,且首項(xiàng)為1,公差為a2-a1=1,,所以an=n. (2)∵2nbn+1=(n+1)bn, ∴(n≥1), ∴數(shù)列是以=1為首項(xiàng),為公比的等比數(shù)列, 即,從而bn=, Tn=+…+Tn=+…+,由①-②,得Tn=1++…+=2-,∴Tn=4-.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!