對高三數(shù)學(xué)首輪復(fù)習(xí)解題教學(xué)的建議 新課標(biāo) 人教版(通用) (2)

上傳人:艷*** 文檔編號:110046463 上傳時間:2022-06-17 格式:DOC 頁數(shù):4 大?。?2KB
收藏 版權(quán)申訴 舉報 下載
對高三數(shù)學(xué)首輪復(fù)習(xí)解題教學(xué)的建議 新課標(biāo) 人教版(通用) (2)_第1頁
第1頁 / 共4頁
對高三數(shù)學(xué)首輪復(fù)習(xí)解題教學(xué)的建議 新課標(biāo) 人教版(通用) (2)_第2頁
第2頁 / 共4頁
對高三數(shù)學(xué)首輪復(fù)習(xí)解題教學(xué)的建議 新課標(biāo) 人教版(通用) (2)_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《對高三數(shù)學(xué)首輪復(fù)習(xí)解題教學(xué)的建議 新課標(biāo) 人教版(通用) (2)》由會員分享,可在線閱讀,更多相關(guān)《對高三數(shù)學(xué)首輪復(fù)習(xí)解題教學(xué)的建議 新課標(biāo) 人教版(通用) (2)(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、對高三數(shù)學(xué)首輪復(fù)習(xí)解題教學(xué)的建議 尤榮勇 高三數(shù)學(xué)首輪復(fù)習(xí)成功與否直接關(guān)系到第二輪復(fù)習(xí)及后繼復(fù)習(xí)的順利進(jìn)行,而解題教學(xué)是首輪復(fù)習(xí)中的一個重要環(huán)節(jié),如何針對首輪復(fù)習(xí)的特點(diǎn),輕松高效的做好解題教學(xué),是我們締畢業(yè)班數(shù)學(xué)老師所追求的目標(biāo),筆者根據(jù)多年的高三復(fù)習(xí)實(shí)踐經(jīng)驗(yàn),談?wù)勛约旱捏w會,供同仁們在教學(xué)中參考。 1 注重解題規(guī)范性、示范性、提高學(xué)生解題準(zhǔn)確率 A N D C M B 規(guī)范的解題能夠使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,拉高思維水平,規(guī)范的解題主要包括審題規(guī)范,語言表達(dá)規(guī)范、答案規(guī)范。審題是對題目進(jìn)行分析、綜合、尋求解題思路和方法的過程,所以審題規(guī)范是正確解題的先決條件,而語言表達(dá)規(guī)

2、范和答案規(guī)范是檢驗(yàn)學(xué)生對知識的認(rèn)識程度。大家都知道,高考試卷中主觀題的評分標(biāo)準(zhǔn)都是分步給分的。一般來說,老師地高一、高二新授課教學(xué)時,能規(guī)范示范,學(xué)生也能規(guī)范答題,但到了高三,老師往往更注重大容量的題海戰(zhàn)術(shù),學(xué)生也疲于奔命,結(jié)果是老師講了不少題,學(xué)生做了不少題,但最終學(xué)生的能力幾乎沒有多大提高 ,在高考中也就沒有多大的競爭力。如果我們從平時嚴(yán)格要求學(xué)生,能在每節(jié)課盡量做到示范一道題的解題過程,這對提高學(xué)生解題正確率大有裨益。筆者在2020屆高三兩個平行的選修物理、化學(xué)的物化(3)班、物化(5)班進(jìn)行求二面角大小的復(fù)習(xí)時,做過這樣的試驗(yàn):在物化(5)班進(jìn)行思路點(diǎn)撥并進(jìn)行示范,在物化(3)班就只進(jìn)

3、行思路點(diǎn)撥,然后在第二天的數(shù)學(xué)課堂要求學(xué)生隨堂練習(xí)一道求異面直線所成角的習(xí)題: 如圖1,在空間四邊形ABCD中,AB=BC=CD=DA=A C=BC=a,M、N分別是BC和AD的中點(diǎn),求異面直線AM和CN所成角的余弦值。 試驗(yàn)的情況如下表所示: 圖中標(biāo)出角說明作法且證明正確,計(jì)算結(jié)果也正確 圖中標(biāo)出角說明作法且證明正確,但計(jì)算結(jié)果也正確 圖中標(biāo)出角沒有作法和簡要證明,僅有正確計(jì)算結(jié)果 完全做錯或沒有做的 物化(3)班 (40)人 20人 3人 13人 4人 物化(5)班 (38) 29人 2人 3人 4人 結(jié)果顯示,物化(3)班遠(yuǎn)不如物化(5)班的完成

4、效果,所以我們在復(fù)習(xí)課教學(xué)時,道先要做好示范,同時要求學(xué)生在解題中規(guī)范答題,而且示范的例題應(yīng)保留在黑板上,以便學(xué)生遇到困難時可主動對照解決,否則 ,在以后的檢測乃至高考中,即使答案正確,但推理過程零亂、書寫步驟不規(guī)范、語言表達(dá)不準(zhǔn)確,同樣會導(dǎo)致過失性失分而得不到應(yīng)有的分?jǐn)?shù)。 2 例題選擇要有典型必,在解題方法上側(cè)重通性通法,淡化特殊技巧 高三數(shù)學(xué)首輪復(fù)習(xí)的主要任務(wù)是幫助學(xué)生構(gòu)建知識網(wǎng)絡(luò),形成知識模塊,習(xí)題教學(xué)是實(shí)現(xiàn)這個任務(wù)的必要手段。要使學(xué)生牢固地掌握數(shù)學(xué)知識,沒有必要的適當(dāng)?shù)睦}講解和練習(xí),學(xué)生就不可能鞏固所學(xué)知識,掌握基本技能和培養(yǎng)解題能力。那么哪些是首輪復(fù)習(xí)中的典型例題,筆者的理解是

5、,它不是那些偏題、難題、怪題,而是在問題中能融入相關(guān)知識點(diǎn)、富有啟發(fā)性,通過該問題的解決,有促使學(xué)生理解知識,掌握方法,獲取新見解的題,何等典型性的例題即具有代表性,研究它的典型意義,可以“以點(diǎn)代面”使學(xué)生舉一反三、觸類旁通。例如在解析幾何中用代入法求動點(diǎn)軌跡問題。我們不妨選擇這樣的例題; Q y O P A(2,0) x 如圖2,設(shè)A的坐標(biāo)為(2,0),Q為圓x2+y2=1上任一點(diǎn),OP是△AOQ中∠AOQ的平分線,求P點(diǎn)的軌跡。 圖2 解決問題可以用通性通法--------“代入法”來解

6、決,同時從這個問題中可以抽象用該發(fā)求動點(diǎn)軌跡的一般模型和方法:設(shè)點(diǎn)P———得點(diǎn)出Q——代入已知曲線方程。 結(jié)合首輪復(fù)習(xí)的特點(diǎn),包含知識點(diǎn)多,但思維跨度、運(yùn)算量特別大的題我們要少選,甚至不選。因?yàn)閷W(xué)生在首輪復(fù)習(xí)中還不具備那樣的能力,所以選擇這樣的題不僅不能殺使學(xué)生掌握解題技巧,提高思維能力,相反,容易使學(xué)生對數(shù)學(xué)產(chǎn)生畏懼心理,逐漸對數(shù)學(xué)失去興趣,拔苗助長,得不償失!為此教師必須對例題和練習(xí)題精心設(shè)計(jì)和選擇。那么,這些典型例題的資源來自哪里?可以是以前教學(xué)中積累的,也可以是從抱刊雜志、網(wǎng)絡(luò)等渠道獲取的,當(dāng)然切不可忽視課本中的一些例題和習(xí)題,因?yàn)檎n本中的例題和習(xí)題都是經(jīng)過專家、學(xué)者反復(fù)推敲而選定

7、的,它具有一定的方向性和輻射性,無論是全國試卷還是各省自主命題的試卷許多考題都是由課本習(xí)題演變、改裝而成的。如果學(xué)生對這些課本上的知識真正搞懂了,那么,那些考題也就迎刃而解了。 3通過一題多解、一題多變,發(fā)揮例題的增值功能 A B C D 在高三首輪復(fù)習(xí)中,如何使例題在有限的時間內(nèi)發(fā)揮出較大的功能?一般教學(xué)經(jīng)驗(yàn)豐富的教師,可使例題縱橫延伸主要是指對例題的一題多解的探討,縱向延伸主要是指改變例題的條件和結(jié)論,采取有層次的一題多變的變式教學(xué),例如人教版第二冊(下B)的習(xí)題9.8的第4題:如圖3,已知正方體ABCD-的棱長為1,求直線DA’與AC的距離。教師可以引導(dǎo)學(xué)

8、生從不同的入口,挖掘不同的解法。 解法1:∵AC∥平面,點(diǎn)A到平面的距離h就等于異面直線AC與D的距離,從而轉(zhuǎn)化為點(diǎn)而距。 解法2: 解法 3:不妨在AC上任取一點(diǎn)H,過H作GH⊥AD交AD于點(diǎn)G,則GH⊥平面AD,,在上再任取一點(diǎn)F,轉(zhuǎn)化為異面直線 上任意兩點(diǎn)距離的最小值。 解法4:以D為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,則D(0,0,0),A(1,0,0),C(0,1,0),(0,0,1),(1,0,1),設(shè)MN的一個方向向量為,利用得即為所求的距離,在教學(xué)中,教師應(yīng)發(fā)掘問題的多解因素,結(jié)合學(xué)生的實(shí)際情況,鼓勵學(xué)生以問題為出發(fā)點(diǎn),不囿于單一的解題思路和方法,引導(dǎo)學(xué)生在解法上求異,盡可

9、能尋求較多的解題思路、方法。而教學(xué)中通過一題多變的教學(xué)手段,能使學(xué)生深刻吃透知識 的外延與內(nèi)涵,讓他們掌握其內(nèi)涵發(fā)展與免戰(zhàn)牌變換,使其對知識能融會貫通,從而培養(yǎng)學(xué)生思維的深刻性,提高他們分析問題、解決問題的能力,例如在復(fù)習(xí)集合的運(yùn)算時,筆者采用了如下手段:已知集合A={x∣y=x2,x∈R},B={x∣x2=1},求A∩B. 學(xué)生完成這道題后,做了如下變式題: 變題1:A={y ∣y=x2,,x∈R},B={x∣x2=1},求A∩B。 變題2:A={(x,y)∣y=x2,x∈R},B={x∣x2=1},求A∩B. 變題3:A={(x,y)∣y=x2,x∈R},B={(x,y)∣x2=1

10、},求A∩B. 變題4:A={x+y∣y=x2,x∈R},B={x∣x2=1},求A∩B. 通過這一組變題,層層推進(jìn),使學(xué)生對“元素”、“交集”的認(rèn)識和理解呈螺旋式上升,從而對知識的理解 更加深刻,培養(yǎng)了學(xué)生思維的深刻性。一題多解、一題多變不僅增強(qiáng)了例題的使用價值,同時培養(yǎng)了學(xué)生的發(fā)散思維能力,挖掘出學(xué)生的創(chuàng)新潛力,形成探究意識,從而達(dá)到以一勝多的功效。 4.錯解剖析、正本清源,改善學(xué)生的思維品質(zhì) 在首輪復(fù)習(xí)教學(xué)中,我們發(fā)現(xiàn) ,有一些錯誤是學(xué)生的共性。如何避免他們在以后的二輪復(fù)習(xí)是中不出錯或是少出錯,是值得我們研究的問題,如果一味地把正確的解法 拋給他們,盡管暫時學(xué)生會理解它,查時間一

11、長,往往又所剩無幾。筆者通過多年的實(shí)踐,感覺到如果把學(xué)生經(jīng)常出現(xiàn) 的錯誤,適時作以展示 ,讓他們自己首先來糾錯,這樣處理印象會比較深刻。例如解含有參數(shù)的二次函數(shù)、二次不等式的有關(guān)問題時,學(xué)生經(jīng)常會漏考慮二次項(xiàng)系數(shù);求等比數(shù)列前n項(xiàng)和時,學(xué)生會漏考慮公比為1的情況研究函數(shù)奇偶性時,學(xué)生會漏考慮函數(shù)的定義域關(guān)于原點(diǎn)對稱等等;筆者就把學(xué)生作業(yè)中或測驗(yàn)中出現(xiàn)的這些原汁原味的錯誤(有些甚至是前幾屆學(xué)生出現(xiàn)的錯誤)在課堂上展示,通過這種錯解剖析、以錯糾錯來正本清源,易于學(xué)生對知識深刻理解、掌握,改善思維品質(zhì)。反之,如果我們總是把正確的答案直接奉送給學(xué)生,則不能暴露問題的矛盾,也達(dá)不到預(yù)期的效果。 5.指

12、導(dǎo)學(xué)生題后反思,總結(jié)解題規(guī)律,提升探究能力 認(rèn)真并正確解題,有助于理解知識,發(fā)現(xiàn)問題,發(fā)展能力,但是解完題后并不意味著學(xué)習(xí)結(jié)束。解題以后教師要引導(dǎo) 學(xué)生進(jìn)行反思 ,進(jìn)一步理解 、總結(jié) ,多問幾個為什么,把每道題的知識點(diǎn),題型 結(jié)構(gòu)、類型,條件與結(jié)論的關(guān)系等理解透徹,題后反思 ,便于總結(jié)解題規(guī)律,優(yōu)化解題方法從而能趕到擺脫題海戰(zhàn)術(shù)、以少勝多、事半功倍的錁。題后反思 還有利于積累經(jīng)驗(yàn),鞏固學(xué)習(xí)成果,真正達(dá)到解題的目的。“題海無邊,總結(jié)是岸”是很有道理的。筆者在復(fù)習(xí)解三角形中,曾有過這樣的經(jīng)歷:在△ABC中,證明(a2-b2-c2)tanA+(a2-b2+c2)tanB=0.有的學(xué)生給出了如下的證

13、明:設(shè)△ABC的面積為S,左邊=-2bc cosAtanA+2accosBtanB=-2bcsinA+2acsinB=-4S+4S=0.我首先肯定了這種證法相當(dāng)巧妙,又不失時機(jī)地對學(xué)生因勢利導(dǎo),引導(dǎo)學(xué)生對證明結(jié)果及過程反思、探索,便易發(fā)現(xiàn)(b2+c2-a2)tanA=(a2+c2-b2)tanB=(a2+b2-c2)tanC=4S; 進(jìn)一步又有tanA=; tanB=; tanC=; 還有cotA +cotB+cotC=; 等等。這些優(yōu)美和諧的結(jié)論反映了學(xué)生可貴的創(chuàng)造性思維品質(zhì)。若沒有反思、探索的過程,就題論題,至多就是解了一道題,腦海中不會留下深刻的印象,對解另外的題不會有什么啟發(fā)。在復(fù)習(xí)中許多學(xué)生抱怨說,平時解題甚多,但考試結(jié)果卻總不理想。我想造成這種現(xiàn)象的一個重要原因是解題后沒有反思,不善于總結(jié)歸納、重新探索,固有的思維成果沒有得到鞏固、提高、升華,思維的創(chuàng)造性沒有得到應(yīng)有的發(fā)展,導(dǎo)致對知識的遷移能力不夠。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!