高中數(shù)學(xué) 第三章 不等式復(fù)習(xí)教案 新人教A版必修5.doc

上傳人:good****022 文檔編號(hào):116358616 上傳時(shí)間:2022-07-05 格式:DOC 頁數(shù):19 大?。?74.01KB
收藏 版權(quán)申訴 舉報(bào) 下載
高中數(shù)學(xué) 第三章 不等式復(fù)習(xí)教案 新人教A版必修5.doc_第1頁
第1頁 / 共19頁
高中數(shù)學(xué) 第三章 不等式復(fù)習(xí)教案 新人教A版必修5.doc_第2頁
第2頁 / 共19頁
高中數(shù)學(xué) 第三章 不等式復(fù)習(xí)教案 新人教A版必修5.doc_第3頁
第3頁 / 共19頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 第三章 不等式復(fù)習(xí)教案 新人教A版必修5.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第三章 不等式復(fù)習(xí)教案 新人教A版必修5.doc(19頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第三講 不等式一、 核心要點(diǎn)1、 不等式的性質(zhì)(1)不等式的基本性質(zhì):(同向不等式可加不可減,可乘不可除)(盡量減少加和乘的次數(shù))A、對(duì)稱性:;B、傳遞性:;C、可加性:;D、可乘性:;E、加法法則:;F、乘法法則:;G、乘方法則:;H、開方法則:.(2)比較兩數(shù)或兩式的大小方法:(作差法步驟:作差變形定號(hào))A、作差法:對(duì)于任意,; ; ;B、作商法:設(shè),則 ; ; .備注1:不等式作差時(shí)常用到因式分解、配方法、通分、有理化等變形技巧;備注2:對(duì)于比較大小時(shí),要考慮各種可能情況,對(duì)不確定的因素進(jìn)行分類討論;備注3:平方差公式:;平方和公式:.2、 不等式的解法;(1)一元二次不等式及的解法:(

2、轉(zhuǎn)化為)A、若方程的且兩實(shí)根分別為,則不等式的解集為,不等式的解集為;B、若方程的且兩相等實(shí)根分別為,則不等式的解集為,不等式的解集為;C、若方程的,則不等式的解集為,不等式的解集為.(2)分式不等式的解法:化分式不等式為整式不等式進(jìn)行求解(具體見模塊); (3)高次不等式的解法:序軸標(biāo)根法(過程見模塊);(4)無理不等式的解法:平方法化無理不等式為有理不等式(具體見模塊);(5)絕對(duì)值不等式的解法:分類討論或平方法(具體見模塊).3、 基本不等式:如果,則(當(dāng)且僅當(dāng)時(shí)取“”)(一正二定三相等).(1)特例:,;(同號(hào)).(2)變形:;(3)擴(kuò)展:.(備注:調(diào)和幾何算術(shù)平方).4、 均值定理:

3、已知.(1)如果(定值),則(當(dāng)且僅當(dāng)時(shí)取“”)“和定積最大”.(2)如果(定值),則(當(dāng)且僅當(dāng)時(shí)取“”)“積定和最小”.5、 判斷二元一次不等式(組)表示平面區(qū)域的方法“選點(diǎn)法”:直線定邊界,分清虛實(shí);選點(diǎn)定區(qū)域,常選原點(diǎn).6、 線性規(guī)劃中常見代數(shù)式的幾何意義:(1)表示點(diǎn)與原點(diǎn)之間的距離;(2)表示點(diǎn)與點(diǎn)之間的距離;(3)表示點(diǎn)與原點(diǎn)連線的斜率;(4)表示點(diǎn)與點(diǎn)連線的斜率.二、考點(diǎn)突破考點(diǎn)一:不等式的基本性質(zhì):題型一:不等式的性質(zhì):例1、如果滿足且,那么下列選項(xiàng)中不一定成立的是( )A、B、C、D、練1:設(shè),則下列不等式成立的是( )A、B、C、D、練2:已知,并且,那么一定成立的是( )

4、A、B、C、D、題型二:比較數(shù)(式)的大小與比較法證明不等式:例2、若且,試比較與的大小.解:由于又且,所以,所以.練3:若,試比較與的大小.答案:由于,所以且,故,所以.練習(xí)4:設(shè)且,試比較與的大小.答案:,因?yàn)榍?若,所以,故;若,所以,故.綜上所述,.題型三:已知不等式的關(guān)系,求目標(biāo)式的取值范圍:例3、(10遼寧理)已知且,則的取值范圍是 . 解析:令,得,解得,即.由,得,所以,故的取值范圍是.練習(xí)1:已知且,求的取值范圍.解析:設(shè),所以,解得.所以.所以,即,所以的取值范圍是 .練習(xí)2:設(shè),且,求的取值范圍.解:設(shè),則,即,于是得,得.所以.因?yàn)?,所以,?練習(xí)3:(10江蘇)設(shè)為實(shí)

5、數(shù),滿足,則的最大值是 . 解:設(shè),化簡得,得,所以的最大值是.考點(diǎn)二、一元二次不等式及其解法:題型一:一元二次不等式的定義:例1、下列不等式中,一元二次不等式的個(gè)數(shù)為( ); ; .A、B、C、D、題型二:簡單一元二次不等式的求解:例2、求下列一元二次不等式的解集:(1);(2);(3);(4).解:(1)由,得. 又方程的兩根是或,所以原不等式的解集為.(2),即, 又方程的根為.所以的解集為.(3)由,得,而的兩個(gè)根是或.所以不等式的解集為.(4)原不等式可化為,即,所以不等式的解集為.題后感悟解不含參數(shù)的一元二次不等式的一般步驟:(1)通過對(duì)不等式的變形,使不等式右側(cè)為0,使二次項(xiàng)系數(shù)

6、為正(2)對(duì)不等式左側(cè)因式分解,若不易分解,則計(jì)算對(duì)應(yīng)方程的判別式(3)求出相應(yīng)的一元二次方程的根或根據(jù)判別式說明方程無實(shí)根(4)根據(jù)一元二次方程根的情況畫出對(duì)應(yīng)的二次函數(shù)的草圖(5)根據(jù)圖象寫出不等式的解集.練1:求下列不等式的解集:(1);(2);(3);(4).答案:(1);(2);(3);(4).練2:設(shè)集合,則中有 個(gè)元素. 練3:解下列不等式:(1);(2);(3).答案:(1);(2);(3).題型三:解含參數(shù)的一元二次不等式:例3、解關(guān)于的不等式.(因式分解比較兩根大小分類討論求解)解:原不等式可化為,對(duì)應(yīng)的一元二次方程的根為,(1)當(dāng)時(shí),不等式的解集為.(2)當(dāng)時(shí),原不等式化

7、為,無解.(3)當(dāng)時(shí),不等式的解集為.綜上所述,原不等式的解集為:時(shí),;時(shí),;時(shí),.題后感悟含參數(shù)的不等式的解題步驟為:(1)將二次項(xiàng)系數(shù)轉(zhuǎn)化為正數(shù);(2)判斷相應(yīng)方程是否有根(如果可以直接分解因式,可省去此步);(3)根據(jù)根的情況寫出相應(yīng)的解集(若方程有相異根,為了寫出解集還要分析根的大小)另外,當(dāng)二次項(xiàng)含有參數(shù)時(shí),應(yīng)先討論二次項(xiàng)系數(shù)是否為0,這決定不等式是否為二次不等式練4:解關(guān)于的不等式:(1);(2).答案:(1)原不等式可化為.當(dāng)時(shí),所以原不等式的解集為;當(dāng)時(shí),所以原不等式的解集為;當(dāng)時(shí),所以原不等式的解集為;當(dāng)時(shí),所以原不等式的解集為;當(dāng)時(shí),所以原不等式的解集為.(2)當(dāng)時(shí),原不等

8、式可化為,解得,所以原不等式的解集為;)當(dāng)時(shí),原不等式可化為,對(duì)應(yīng)方程的兩根為.當(dāng)時(shí),所以原不等式的解集為;當(dāng)時(shí),所以原不等式的解集為;當(dāng)時(shí),所以原不等式的解集為.)當(dāng)時(shí),原不等式可化為,對(duì)應(yīng)方程的兩根為,又,所以原不等式的解集為.練5:解不等式.答案:(1)當(dāng)時(shí),原不等式轉(zhuǎn)化為,即,得不等式的解集為.(2)當(dāng)時(shí),將原不等式兩邊同時(shí)除以可轉(zhuǎn)化為,因?yàn)椋圆坏仁降慕饧癁?(3)當(dāng)時(shí),原不等式轉(zhuǎn)化為,當(dāng)時(shí),解集為;當(dāng)時(shí),所以不等式的解集為;當(dāng)時(shí),所以不等式的解集為.考點(diǎn)三、一元二次不等式的應(yīng)用:題型一:不等式的恒成立問題:例1、已知不等式對(duì)于所有的實(shí)數(shù)都成立,求實(shí)數(shù)的取值范圍.解:若,則原不等式

9、可化為,即,不合題意,故.令,因?yàn)樵坏仁綄?duì)任意都成立,所以二次函數(shù)的圖像在軸的下方.則且,即,所以,故的取值范圍為.題后感悟不等式恒成立問題方法總結(jié):(1) 恒成立;(2) 恒成立;練1:若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.答案:當(dāng)時(shí),原不等式可化為,其解集不為,故不滿足題意,舍去;當(dāng)時(shí),要使原不等式的解集為,只需,解得.綜上,所求實(shí)數(shù)的取值范圍為.練2:若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.答案:(1)當(dāng),即時(shí),若,則原不等式可化為,恒成立,若,則原不等式為,即,不符合題目要求,舍去.(2)當(dāng),即時(shí),原不等式的解集為的條件是,解得綜上所述,當(dāng)時(shí),原不等式的解為全體實(shí)數(shù).練3:

10、若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.答案:因?yàn)闀r(shí),原不等式為,所以時(shí)成立.當(dāng)時(shí),由題意得,即,解得.綜上兩種情況可知.題型二:二次方程、二次函數(shù)、二次不等式的關(guān)系:例2、若不等式的解集為,求不等式的解集.解:方法一:由的解集為知,又,則.又為方程的兩個(gè)根,所以,即,又,所以.此時(shí)不等式變?yōu)椋?,又因?yàn)椋?所以所求不等式的解集為.方法二:由已知得且知.設(shè)方程的兩根分別為,則,其中.所以不等式的解集為.題后感悟方法總結(jié):(1) 給出一元二次不等式的解集,則可知二次項(xiàng)的符號(hào)和一元二次方程的根,由根與系數(shù)的關(guān)系可知之間的關(guān)系;練4:已知不等式的解集為,求的解集答案:因?yàn)榈慕饧癁?,所以是方程的兩?shí)根

11、.由根與系數(shù)的關(guān)系得,解得.所以.則不等式的解集為.題型三:一元二次不等式的實(shí)際應(yīng)用:例3、汽車在行駛時(shí),由于慣性作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”剎車距離是分析交通事故的一個(gè)重要因素在一個(gè)限速的彎道上,甲、乙兩車相向而行,發(fā)現(xiàn)情況不對(duì),同時(shí)剎車,但還是相碰了事發(fā)后現(xiàn)場(chǎng)勘查測(cè)得甲車的剎車距離略超過,乙車的剎車距離略超過,又知甲、乙兩種車型的剎車距離與車速之間分別有如下關(guān)系:.試判斷甲、乙兩車有無超速現(xiàn)象,并根據(jù)所學(xué)數(shù)學(xué)知識(shí)給出判斷的依據(jù)解:由題意,對(duì)于甲車,有, 即.解得或 (舍去).這表明甲車的車速超過,但根據(jù)題意剎車距離略超過,由此估計(jì)甲車不會(huì)超過限

12、速. 對(duì)于乙車,有,即.解得或 (舍去).這表明乙車的車速超過,超過規(guī)定限速. 題后感悟(1)解不等式應(yīng)用題,一般可按如下四步進(jìn)行:閱讀理解、認(rèn)真審題、把握問題中的關(guān)鍵量、找準(zhǔn)不等關(guān)系;引進(jìn)數(shù)學(xué)符號(hào),用不等式表示不等關(guān)系(或表示成函數(shù)關(guān)系);解不等式(或求函數(shù)最值);回扣實(shí)際問題考點(diǎn)四、分式不等式、高次不等式及無理不等式的解法:題型一:分式不等式的解法:化分式不等式為整式不等式(1);(2);(3);(4)例1、(12重慶理)不等式的解集為( )A、B、C、D、練1:不等式的解集是 . 解析:. 練2:不等式的解集是 . 解析:.題型二:高次不等式的解法:(序軸標(biāo)根法)序軸標(biāo)根法要點(diǎn):從右向左

13、,從上到下,奇穿偶不穿(前提:保證因式分解后的系數(shù)為正).例2、解不等式:解:設(shè),則的根分別是,將其分別標(biāo)在數(shù)軸上,并畫出如右圖所示的示意圖:所以原不等式的解集是.練3:(10全國)不等式的解集為( )A、B、C、D、練4:不等式的解集是 . 題型三:無理不等式的解法:(化無理不等式為有理不等式)(1);(2)或.例3、解不等式.解:原不等式等價(jià)于:或:,解:,解:,即或,所以,則原不等式的解集為.練5:解不等式的解集.解:移項(xiàng),則,所以原不等式的解集為.練6:解不等式(1);(2).解:(1)原不等式等價(jià)于:或:解:,解:,即:或,所以,則原不等式的解集為.(2)原不等式等價(jià)于,即或,所以原

14、不等式的解集為.考點(diǎn)五:絕對(duì)值不等式的解法:(選修45)(1);(2);(3);(4).例1、(08四川文科)不等式的解集為( )A、B、C、D、解析:.練1:(04全國)不等式的解集為( )A、B、C、D、解析: .練2:(07廣東)設(shè)函數(shù),若,則的取值范圍是 . 解析: 練3:(09山東)不等式的解集為 . 解析:.練4:若不等式對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.解:不等式對(duì)一切實(shí)數(shù)恒成立,由絕對(duì)值的幾何意義可知,表示數(shù)軸上點(diǎn)到和的距離之和,那么對(duì)任意恒成立,顯然,又,故,所以實(shí)數(shù)的取值范圍是.考點(diǎn)六:基本不等式和均值定理:(一正二定三相等)題型一:通過加減項(xiàng)配湊成基本不等式:例1、已知

15、,求的最小值以及取得最小值時(shí)的值.解:由,得,則.當(dāng)且僅當(dāng)時(shí)取“”號(hào).于是或者(舍去)答:最小值是,取得最小值時(shí)的值為.練1:已知,求函數(shù)的最大值.解:由,得,由(當(dāng)且僅當(dāng)時(shí),即時(shí)取“”),得,所以函數(shù)的最大值為.練2:求函數(shù)的最小值.解:令,則,因?yàn)?,所以,故(?dāng)且僅當(dāng)時(shí),即取“”).所以函數(shù)的最小值為.練3:求的最大值.解:令,則,當(dāng)且僅當(dāng),即時(shí)取等號(hào),故的最大值為.題型二:“1”的變換:例2、已知,且,求的最小值.解:因?yàn)椋?,?dāng)且僅當(dāng),即時(shí),的最小值為.練4:已知,則的最小值是 . 解析:由,且(當(dāng)且僅當(dāng),即時(shí)取等),則的最小值為. 題型三:轉(zhuǎn)化與方程消元求二次函數(shù)最值:例3、若正數(shù)

16、滿足,則:(1)的取值范圍是 ;(2)的取值范圍是 . 解:(1)判別式法:令,則,代入原式得,整理得,,得或(舍).(2)判別式法,令,則,代入原式得,整理得,解得或者(舍).備注:以上(1)(2)也可利用基本不等式及其變形解決,或者消元代入求最值解決.練5:若滿足,則的最小值是 . 練6:若滿足,則的最小值是 . 練7:(10重慶)已知滿足,則的最小值是( )A、B、C、D、考點(diǎn)七:簡單線性規(guī)劃問題:題型一:已知線性約束條件,探求線性目標(biāo)關(guān)系最值問題:例1、設(shè)變量滿足約束條件,求的最大值.題型二:已知線性約束條件,探求分式目標(biāo)關(guān)系最值問題:例2、設(shè)變量滿足例1中的約束條件,求的取值范圍.題

17、型三:已知線性約束條件,探求平方和目標(biāo)關(guān)系最值問題:例3、設(shè)變量滿足例1中的約束條件,求的最值,以及此時(shí)對(duì)應(yīng)點(diǎn)的坐標(biāo).題型四:已知線性約束條件,探求區(qū)域面積與周長問題:例4、設(shè)變量滿足例1中的約束條件,試求所圍區(qū)域的面積與周長.題型五:已知最優(yōu)解,探求目標(biāo)函數(shù)參數(shù)問題:例5、設(shè)變量滿足例1中的約束條件,且目標(biāo)函數(shù)(其中)僅在處取得最大值,求的取值范圍.題型六:已知最優(yōu)解,探求約束條件參數(shù)問題:例6、設(shè)變量滿足約束條件,且目標(biāo)函數(shù)在處取得最大值,求,例7、已知滿足不等式組,求使取得最大值的整數(shù).解:不等式組的解集為三直線所圍成的三角形內(nèi)部(不含邊界),設(shè)與,與,與的交點(diǎn)分別為,則的坐標(biāo)分別為,作

18、一組平行線平行于,當(dāng)往右上方移動(dòng)時(shí),隨之增大,所以當(dāng)過點(diǎn)時(shí)最大為,但不是整數(shù)解,又由知可取, 當(dāng)時(shí),代入原不等式組得,所以;當(dāng)時(shí),得或,所以或;當(dāng)時(shí),所以,故的最大整數(shù)解為或. 練習(xí):線性規(guī)劃問題綜合練習(xí)練1:若滿足約束條件,則的取值范圍是( )A、B、C、D、練2:滿足的點(diǎn)中整數(shù)(橫縱坐標(biāo)都是整數(shù))有( )A、個(gè)B、個(gè)C、個(gè)D、個(gè)練3:已知滿足約束條件,則的最大值和最小值分別是( )A、B、C、D、練4:不等式組表示的平面區(qū)域的面積為( )A、B、C、D、無窮大練5:已知滿足約束條件,使取得最小值的最優(yōu)解有無數(shù)個(gè),則的值為( )A、B、C、D、練6:已知表示的平面區(qū)域包含點(diǎn)和,則的取值范圍是( )A、B、C、D、練7:滿足線性約束條件的目標(biāo)函數(shù)的最大值是( )A、B、C、D、練8:若實(shí)數(shù)滿足不等式組,且的最大值為,則實(shí)數(shù)( )A、B、C、D、練9:已知實(shí)數(shù)滿足,試求的最大值和最小值.解:由于.所以的幾何意義是點(diǎn)與點(diǎn)連線的斜率,因此的最值就是點(diǎn)與點(diǎn)連線的斜率的最值,結(jié)合圖像可知,直線的斜率最大,直線的斜率最小,即,此時(shí);,此時(shí).練10:設(shè)變量滿足約束條件,則的最小值為 . 練11:若不等式組表示的平面區(qū)域是一個(gè)三角形,則的取值范圍是 . 或練12:已知平面區(qū)域由以,為頂點(diǎn)的三角形內(nèi)部和邊界組成,若在區(qū)域上有無窮多個(gè)點(diǎn)可使目標(biāo)函數(shù)取得最小值,則 . 19

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!