2019-2020版高中數(shù)學(xué) 模塊復(fù)習(xí)課 第4課時(shí) 利用向量解決平行與垂直、夾角問題練習(xí)(含解析)新人教A版選修2-1
《2019-2020版高中數(shù)學(xué) 模塊復(fù)習(xí)課 第4課時(shí) 利用向量解決平行與垂直、夾角問題練習(xí)(含解析)新人教A版選修2-1》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020版高中數(shù)學(xué) 模塊復(fù)習(xí)課 第4課時(shí) 利用向量解決平行與垂直、夾角問題練習(xí)(含解析)新人教A版選修2-1(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第4課時(shí) 利用向量解決平行與垂直、夾角問題 課后篇鞏固提升 基礎(chǔ)鞏固 1.已知向量a=(x,2,-1),b=(2,4,-2),如果a∥b,那么x等于( ) A.-1 B.1 C.-5 D.5 解析∵向量a=(x,2,-1),b=(2,4,-2),a∥b, ∴x2=24=-1-2,解得x=1.故選B. 答案B 2.(2019全國(guó)Ⅱ高考)已知AB=(2,3),AC=(3,t),|BC|=1,則AB·BC=( ) A.-3 B.-2 C.2 D.3 解析由BC=AC-AB=(1,t-3),|BC|=12+(t-3)2=1,得t=3,則BC=(1,0).所以AB·BC=(2,3
2、)·(1,0)=2×1+3×0=2.故選C. 答案C 3.如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)M,N分別是面對(duì)角線A1B與B1D1的中點(diǎn),若DA=a,DC=b,DD1=c,則MN=( ) A.12(c+b-a) B.12(a+b-c) C.12(a-c) D.12(c-a) 解析在正方體ABCD-A1B1C1D1中,∵點(diǎn)M,N分別是面對(duì)角線A1B與B1D1的中點(diǎn),DA=a,DC=b,DD1=c, ∴MN=MB+BB1+B1N=12A1B+BB1+12B1D1 =12(A1A+AB)+BB1+12(BC+CD) =12(-c+b)+c+12(-a-b) =-12
3、a+12c=12(c-a),故選D.
答案D
4.如圖,正方體ABCD-A1B1C1D1中,N是棱AD的中點(diǎn),M是棱CC1上的點(diǎn),且CC1=3CM,則直線BM與B1N所成的角的余弦值是( )
A.105 B.2515 C.1020 D.1030
解析以D為坐標(biāo)原點(diǎn),以DA、DC、DD1所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系.
設(shè)N32,0,0,B(3,3,0),M(0,3,1),B1(3,3,3),BM=(-3,0,1),B1N=-32,-3,-3.
cos
4、,點(diǎn)B(-5,6,24)和向量a=(-3,4,12),且AB∥a,則點(diǎn)A的坐標(biāo)為 .? 解析∵A(m,-2,n),B(-5,6,24), ∴AB=(-5-m,8,24-n). 又向量a=(-3,4,12),且AB∥a, ∴AB=λa,即-5-m=-3λ,8=4λ,24-n=12λ, 解得λ=2,m=1,n=0,∴點(diǎn)A的坐標(biāo)為(1,-2,0). 答案(1,-2,0) 6.在正方體ABCD-A1B1C1D1中,棱長(zhǎng)為a,M,N分別為A1B和AC上的點(diǎn),A1M=AN=2a3,則MN與平面BB1C1C的位置關(guān)系是 .? 解析∵正方體棱長(zhǎng)為a,A1M=AN=2a3, ∴
5、MB=23A1B,CN=23CA. ∴MN=MB+BC+CN=23A1B+BC+23CA =23(A1B1+B1B)+BC+23(CD+DA) =23B1B+13B1C1. 又CD是平面B1BCC1的法向量, ∴MN·CD=23B1B+13B1C1·CD=0. ∴MN⊥CD. 又MN?平面B1BCC1,∴MN∥平面B1BCC1. 答案平行 7.(2019天津高考)在四邊形ABCD中,AD∥BC,AB=23,AD=5,∠A=30°,點(diǎn)E在線段CB的延長(zhǎng)線上,且AE=BE,則BD·AE= .? 解析∵AD∥BC,且∠DAB=30°, ∴∠ABE=30°. ∵EA=
6、EB, ∴∠EAB=30°. ∠AEB=120°. 在△AEB中,EA=EB=2, BD·AE=(BA+AD)·(AB·BE) =-BA2+BA·BE+AD·AB+AD·BE =-12+23×2×cos30°+5×23×cos30°+5×2×cos180°=-22+6+15=-1. 答案-1 8.如圖,三棱柱ABC-A1B1C1中,CA=CB,∠BAA1=45°,平面AA1C1C⊥平面AA1B1B. (1)求證:AA1⊥BC; (2)若BB1=2AB=2,直線BC與平面ABB1A1所成角為45°,D為CC1的中點(diǎn),求二面角B1-A1D-C1的余弦值. (1)證明過點(diǎn)C
7、作CO⊥AA1,垂足為O,因?yàn)槠矫鍭A1C1C⊥平面AA1B1B,所以CO⊥平面AA1B1B,故CO⊥OB. 又因?yàn)镃A=CB,CO=CO,∠COA=∠COB=90°, 所以Rt△AOC≌Rt△BOC,故OA=OB. 因?yàn)椤螦1AB=45°,所以AA1⊥OB. 又因?yàn)锳A1⊥CO,所以AA1⊥平面BOC,故AA1⊥BC. (2)解以O(shè)為坐標(biāo)原點(diǎn),OA,OB,OC所在直線為x,y,z軸,建立空間直角坐標(biāo)系O-xyz, 因?yàn)镃O⊥平面AA1B1B, 所以∠CBO是直線BC與平面AA1B1B所成角, 故∠CBO=45°,所以AB=2,AO=BO=CO=1,A(1,0,0),B
8、(0,1,0),C(0,0,1),A1(-1,0,0),B1(-2,1,0),D(-1,0,1),
設(shè)平面A1B1D的法向量為n=(x1,y1,z1),則
n·A1D=0,n·B1D=0,所以z1=0,x1-y1+z1=0,
令x1=1,得n=(1,1,0),因?yàn)镺B⊥平面AA1C1C,
所以O(shè)B為平面A1C1D的一條法向量,
OB=(0,1,0),cos
9、證:BF∥平面ADE; (2)求直線CE與平面BDE所成角的正弦值; (3)若二面角E-BD-F的余弦值為13,求線段CF的長(zhǎng). (1)證明依題意,可以建立以A為原點(diǎn),分別以AB,AD,AE的方向?yàn)閤軸,y軸,z軸正方向的空間直角坐標(biāo)系(如圖),可得A(0,0,0),B(1,0,0),C(1,2,0),D(0,1,0),E(0,0,2).設(shè)CF=h(h>0),則F(1,2,h). 依題意,AB=(1,0,0)是平面ADE的法向量,又BF=(0,2,h),可得BF·AB=0,又因?yàn)橹本€BF?平面ADE,所以BF∥平面ADE. (2)解依題意,BD=(-1,1,0),BE=(-1,0
10、,2),CE=(-1,-2,2).
設(shè)n=(x,y,z)為平面BDE的法向量,則n·BD=0,n·BE=0,即-x+y=0,-x+2z=0,不妨令z=1,可得n=(2,2,1).因此有cos
11、力提升 1.正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,點(diǎn)M在AC1上且AM=12MC1,N為B1B的中點(diǎn),則|MN|為( ) A.216a B.66a C.156a D.153a 解析以D為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系Dxyz,則A(a,0,0),C1(0,a,a),Na,a,a2. 設(shè)M(x,y,z), ∵點(diǎn)M在AC1上且AM=12MC1, ∴(x-a,y,z)=12(-x,a-y,a-z). ∴x=23a,y=a3,z=a3.∴M2a3,a3,a3, ∴|MN|=a-23a2+a-a32+a2-a32 =216a. 答案A 2.已知ABCD-A1B1C1
12、D1為正方體,則二面角B-A1C1-A的余弦值為( ) A.23 B.22 C.63 D.32 解析以D為原點(diǎn),直線DA為x軸,直線DC為y軸,直線DD1為z軸,建立空間直角坐標(biāo)系. 設(shè)正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,則A(1,0,0),A1(1,0,1),B(1,1,0),C1(0,1,1),A1C1=(-1,1,0),A1A=(0,0,-1),A1B=(0,1,-1). 設(shè)平面A1C1A的法向量n=(x,y,z), 則n·A1C1=-x+y=0,n·A1A=-z=0,取x=1,得n=(1,1,0). 設(shè)平面A1C1B的法向量m=(a,b,c), 則m·A1C
13、1=-a+b=0,m·A1B=b-c=0,取a=1,得m=(1,1,1). 設(shè)二面角B-A1C1-A的平面角為θ, 則cosθ=|m·n||m||n|=22×3=63. ∴二面角B-A1C1-A的余弦值為63. 故選C. 答案C 3.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,設(shè)AD=AA1=1,AB=2,P是C1D1的中點(diǎn),則B1C與A1P所成角的大小為 ,B1C·A1P= .? 解析以D為坐標(biāo)原點(diǎn),以DA為x軸,DC為y軸,DD1為z軸,建立空間坐標(biāo)系,如圖所示. ∵AD=AA1=1,AB=2,P是C1D1的中點(diǎn), ∴B1(1,2,1),C(0,2,
14、0),A1(1,0,1),P(0,1,1). ∴B1C=(-1,0,-1),A1P=(-1,1,0). ∴B1C·A1P=1+0+0=1,|B1C|=2,|A1P|=2. 設(shè)B1C與A1P所成角為θ, ∴cosθ=12×2=12,∴θ=60°. 答案60° 1 4.已知正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都相等,M為A1C1的中點(diǎn),N為BB1的中點(diǎn),則直線CM與AN所成的角的余弦值為 .? 解析以A為原點(diǎn),在平面ABC內(nèi)過A作AC的垂線為x軸,AC為y軸,AA1為z軸,建立空間直角坐標(biāo)系, 設(shè)正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,則C(0,2,0),M(0
15、,1,2),A(0,0,0),N(3,1,1),CM=(0,-1,2),AN=(3,1,1),設(shè)直線CM與AN所成的角為θ,則cosθ=|CM·AN||CM||AN|=15×5=15.∴直線CM與AN所成的角的余弦值為15.故答案為15. 答案15 5.在四面體P-ABC中,PA,PB,PC兩兩垂直,設(shè)PA=PB=PC=a,則點(diǎn)P到平面ABC的距離為 .? 解析根據(jù)題意,可建立如圖所示的空間直角坐標(biāo)系Pxyz,則P(0,0,0),A(a,0,0),B(0,a,0),C(0,0,a). 過點(diǎn)P作PH⊥平面ABC,交平面ABC于點(diǎn)H,則PH的長(zhǎng)即為點(diǎn)P到平面ABC的距離. ∵
16、PA=PB=PC,∴H為△ABC的外心. 又∵△ABC為正三角形,∴H為△ABC的重心,可得H點(diǎn)的坐標(biāo)為a3,a3,a3. ∴PH=a3-02+a3-02+a3-02=33a. ∴點(diǎn)P到平面ABC的距離為33a. 答案33a 6.如圖,在四棱錐P-ABCD中,AB∥CD,AB=1,CD=3,AP=2,DP=23,DPAD=60°,AB⊥平面PAD,點(diǎn)M在棱PC上. (1)求證:平面PAB⊥平面PCD; (2)若直線PA∥平面MBD,求此時(shí)直線BP與平面MBD所成角的正弦值. 解(1)證明:因?yàn)锳B⊥平面PAD, 所以AB⊥DP. 又因?yàn)镈P=23,AP=2,∠PAD=6
17、0°, 由PDsin∠PAD=PAsin∠PDA,可得sin∠PDA=12, 所以∠PDA=30°,所以∠APD=90°,即DP⊥AP, 因?yàn)锳B∩AP=A,所以DP⊥平面PAB, 因?yàn)镈P?平面PCD,所以平面PAB⊥平面PCD. (2)由AB⊥平面PAD,以點(diǎn)A為坐標(biāo)原點(diǎn),在平面PAD中,過點(diǎn)A作AD的垂線為x軸,AD,AB所在直線分別為y軸,z軸,如圖所示建立空間直角坐標(biāo)系. 其中A(0,0,0),B(0,0,1),C(0,4,3),D(0,4,0),P(3,1,0). 從而BD=(0,4,-1),AP=(3,1,0),PC=(-3,3,3),設(shè)PM=λPC,從而得M(
18、3(1-λ),3λ+1,3λ), BM=(3(1-λ),3λ+1,3λ-1), 設(shè)平面MBD的法向量為n=(x,y,z), 若直線PA∥平面MBD,滿足n·BM=0,n·BD=0,n·AP=0, 即3(1-λ)x+(3λ+1)y+(3λ-1)z=0,4y-z=0,3x+y=0, 得λ=14,取n=(3,-3,-12), 且BP=(3,1,-1), 直線BP與平面MBD所成角的正弦值sinθ=|n·BP||n||BP|=|3-3+12|156×5=265195. 7.如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,∠ABC=60°,AB=3,AD=23
19、,AP=3. (1)求證:平面PCA⊥平面PCD; (2)設(shè)E為側(cè)棱PC上的一點(diǎn),若直線BE與底面ABCD所成的角為45°,求二面角E-AB-D的余弦值. 解(1)證明:在平行四邊形ABCD中,∠ADC=60°,CD=3,AD=23,由余弦定理得AC2=AD2+CD2-2AD·CDcos∠ADC=12+3-2×23×3×cos60°=9, ∴AC2+CD2=AD2, ∴∠ACD=90°,即CD⊥AC, 又PA⊥底面ABCD,CD?底面ABCD, ∴PA⊥CD. 又AC∩CD=C,∴CD⊥平面PCA. 又CD?平面PCD, ∴平面PCA⊥平面PCD. (2)如圖,以A為
20、坐標(biāo)原點(diǎn),AB,AC,AP所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系.則A(0,0,0),B(3,0,0),C(0,3,0),D(-3,3,0),P(0,0,3).
設(shè)E(x,y,z),PE=λPC(0≤λ≤1),
則(x,y,z-3)=λ(0,3,-3),
∴x=0,y=3λ,z=3-3λ,即點(diǎn)E的坐標(biāo)為(0,3λ,3-3λ),∴BE=(-3,3λ,3-3λ).
又平面ABCD的一個(gè)法向量為n=(0,0,1),
∴sin45°=|cos
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025《增值稅法》高質(zhì)量發(fā)展的增值稅制度規(guī)范增值稅的征收和繳納
- 深入學(xué)習(xí)《中華人民共和國(guó)科學(xué)技術(shù)普及法》推進(jìn)實(shí)現(xiàn)高水平科技自立自強(qiáng)推動(dòng)經(jīng)濟(jì)發(fā)展和社會(huì)進(jìn)步
- 激揚(yáng)正氣淬煉本色踐行使命廉潔從政黨課
- 加強(qiáng)廉潔文化建設(shè)夯實(shí)廉政思想根基培育風(fēng)清氣正的政治生態(tài)
- 深入學(xué)習(xí)2024《突發(fā)事件應(yīng)對(duì)法》全文提高突發(fā)事件預(yù)防和應(yīng)對(duì)能力規(guī)范突發(fā)事件應(yīng)對(duì)活動(dòng)保護(hù)人民生命財(cái)產(chǎn)安全
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)第一輪單元滾動(dòng)復(fù)習(xí)第10天平行四邊形和梯形作業(yè)課件新人教版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)第14單元階段性綜合復(fù)習(xí)作業(yè)課件新人教版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單十五課件新人教版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單七課件西師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)易錯(cuò)清單六作業(yè)課件北師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)易錯(cuò)清單二作業(yè)課件北師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)四分?jǐn)?shù)的意義和性質(zhì)第10課時(shí)異分母分?jǐn)?shù)的大小比較作業(yè)課件蘇教版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)周周練四作業(yè)課件北師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)六折線統(tǒng)計(jì)圖單元復(fù)習(xí)卡作業(yè)課件西師大版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)6除數(shù)是兩位數(shù)的除法單元易錯(cuò)集錦一作業(yè)課件新人教版