4、-1在x∈12,+∞上大于等于0恒成立,g'(x)=6x2+2ax=2x(3x+a),
當(dāng)a=0時(shí),g'(x)≥0,g(x)在R上為增函數(shù),則有g(shù)12≥0,解得14+a4-1≥0,a≥3(舍);
當(dāng)a>0時(shí),g(x)在(0,+∞)上為增函數(shù),則g12≥0,解得14+a4-1≥0,a≥3;
當(dāng)a<0時(shí),同理分析可知,滿足函數(shù)f(x)=x2+ax+1x在12,+∞是增函數(shù)的a的取值范圍是a≥3(舍).故選D.
6.函數(shù)f(x)=lnxx的單調(diào)遞增區(qū)間是 .?
答案(0,e)
解析由f'(x)=lnxx'=1-lnxx2>0(x>0),可得1-lnx>0,x>0,解得x∈(0,
5、e).
7.(2017浙江麗水模擬)已知函數(shù)f(x)=ln x+2x,若f(x2+2)0,函數(shù)單調(diào)遞增,所以由f(x2+2)
6、,
又f'(x)=3x2+3>0,所以f(x)在R上單調(diào)遞增,
所以f(mx-2)+f(x)<0可化為f(mx-2)<-f(x)=f(-x),
由f(x)在R上單調(diào)遞增可知mx-2<-x,即mx+x-2<0,
則對(duì)任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,
等價(jià)于對(duì)任意的m∈[-2,2],mx+x-2<0恒成立,
所以-2x+x-2<0,2x+x-2<0,解得-2
7、≤0的解集為 .?
答案-13,1∪[2,3)
解析由圖象可知,f(x)在區(qū)間-13,1和[2,3)上單調(diào)遞減,所以f'(x)≤0的解集為-13,1∪[2,3).
10.若f(x)=-12x2+bln(x+2)在[-1,+∞)上是減函數(shù),則實(shí)數(shù)b的取值范圍是( )
A.[-1,+∞) B.[1,+∞) C.(-∞,-1] D.(-∞,1]
答案C
解析由已知得f'(x)=-x+bx+2≤0在[-1,+∞)上恒成立,∴b≤(x+1)2-1在[-1,+∞)上恒成立,∴b≤-1.
11.定義在(0,+∞)上的函數(shù)f(x)滿足x2f'(x)+1>0,f(2)=92,則不
8、等式f(lg x)<1lgx+4的解集為( )
A.(10,100) B.(0,100) C.(100,+∞) D.(1,100)
答案D
解析令g(x)=f(x)-1x,則g'(x)=f'(x)+1x2>0,
g(x)在(0,+∞)遞增,而g(2)=f(2)-12=4,
故由f(lgx)<1lgx+4,得g(lnx)
9、,或x>1} D.{x|x>1}
答案D
解析設(shè)F(x)=f(x)-x2+12,則F(1)=f(1)-12+12=1-1=0,又F'(x)=f'(x)-12,對(duì)任意x∈R,有F'(x)=f'(x)-12<0,即函數(shù)F(x)在R上單調(diào)遞減,則F(x)<0的解集為(1,+∞),即f(x)
10、a=ln|x|+32x2,設(shè)f(x)=ln|x|+32x2,則函數(shù)f(x)是偶函數(shù),當(dāng)x>0時(shí),f(x)=lnx+32x2,
則f'(x)=1x·x2-lnx+32·2xx4=x-2xlnx-3xx4=-2x(1+lnx)x4,
由f'(x)>0得-2x(1+lnx)>0,得1+lnx<0,即lnx<-1,得00,即lnx>-1,得x>1e,此時(shí)函數(shù)單調(diào)遞減,
即當(dāng)x>0時(shí),x=1e時(shí),函數(shù)f(x)取得極大值f1e=ln1e+32(1e)?2=-1+32e2=12e2,作出函數(shù)f(x)的圖象如
11、圖.要使a=ln|x|+32x2有4個(gè)不同的交點(diǎn),則滿足00時(shí),f(x)=-xe-x;
②函數(shù)f(x)的單調(diào)遞減區(qū)間是(-∞,-1)和(1,+∞);
③對(duì)?x1,x2∈R,都有|f(x1)-f(x2)|≤2e.其中正確的序號(hào)是 .?
答案②③
解析①當(dāng)x>0時(shí),f(x)=-f(-x)=-(-x)e-x=xe-x,x>0,故①錯(cuò)誤;
②當(dāng)x<0時(shí),f'(x)=ex(x+1),則在(-∞,-1)單調(diào)遞減,由奇函數(shù)對(duì)稱(chēng)性可知,在(1,+∞)也單調(diào)遞減,故
12、②正確;
③由導(dǎo)函數(shù)分析可知,f(x)min=f(-1)=-1ef(x)max=f(1)=1e,所以|f(x1)-f(x2)|≤|f(x)max-f(x)min|=2e,故③正確.所以正確的命題是②③.
15.已知函數(shù)f(x)=x2ex,若f(x)在t,t+1上不單調(diào),則實(shí)數(shù)t的取值范圍是 .?
答案(-3,-2)∪(-1,0)
解析由題意,得f'(x)=ex(x2+2x),
∴f(x)在(-∞,-2),(0,+∞)上單調(diào)遞增,(-2,0)上單調(diào)遞減,又f(x)在[t,t+1]上不單調(diào),∴t<-2,t+1>-2或t<0,t+1>0,即實(shí)數(shù)t的取值范圍是(-3,-2)∪(-1
13、,0),故填:(-3,-2)∪(-1,0).
16.(2017江蘇高考)已知函數(shù)f(x)=x3-2x+ex-1ex,其中e是自然對(duì)數(shù)的底數(shù).若f(a-1)+f(2a2)≤0,則實(shí)數(shù)a的取值范圍是 .?
答案-1,12
解析因?yàn)閒(-x)=-x3+2x+1ex-ex=-f(x),所以函數(shù)f(x)是奇函數(shù),因?yàn)閒'(x)=3x2-2+ex+e-x≥3x2-2+2ex·e-x≥0,所以f(x)在R上單調(diào)遞增,又f(a-1)+f(2a2)≤0,即f(2a2)≤f(1-a),所以2a2≤1-a,即2a2+a-1≤0,解得-1≤a≤12,故實(shí)數(shù)a的取值范圍為-1,12.
17.設(shè)f(x)
14、=ex1+ax2,其中a為正實(shí)數(shù).
(1)當(dāng)a=43時(shí),求f(x)單調(diào)區(qū)間;
(2)若f(x)為R上的單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
解對(duì)f(x)求導(dǎo)得f'(x)=ex·1+ax2-2ax(1+ax2)2.①
(1)當(dāng)a=43時(shí),若f'(x)=0,則4x2-8x+3=0,
解得x1=32,x2=12.結(jié)合①,可知
x
-∞,12
12
12,32
32
32,+∞
f'(x)
+
0
-
0
+
f(x)
↗
極大值
↘
極小值
↗
所以增區(qū)間為-∞,12,32,+∞;減區(qū)間為12,32.
(2)若f(x)為R上的單調(diào)函數(shù),則f'(x)在R
15、上不變號(hào),結(jié)合①與條件a>0,知ax2-2ax+1≥0在R上恒成立,即Δ=4a2-4a=4a(a-1)≤0,又a>0,得0
16、,+∞).
f'(x)=ax+2(x+1)2=ax2+(2a+2)x+ax(x+1)2.
當(dāng)a≥0時(shí),f'(x)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增.
當(dāng)a<0時(shí),令g(x)=ax2+(2a+2)x+a,
由于Δ=(2a+2)2-4a2=4(2a+1).
①當(dāng)a=-12時(shí),Δ=0,f'(x)=-12(x-1)2x(x+1)2≤0,函數(shù)f(x)在(0,+∞)上單調(diào)遞減.
②當(dāng)a<-12時(shí),Δ<0,g(x)<0,
f'(x)<0,函數(shù)f(x)在(0,+∞)上單調(diào)遞減.
③當(dāng)-120.
設(shè)x1,x2(x1
17、)+2a+1a,x2=-(a+1)-2a+1a.
由x1=a+1-2a+1-a=a2+2a+1-2a+1-a>0,
所以x∈(0,x1)時(shí),g(x)<0,f'(x)<0,函數(shù)f(x)單調(diào)遞減;
x∈(x1,x2)時(shí),g(x)>0,f'(x)>0,函數(shù)f(x)單調(diào)遞增;
x∈(x2,+∞)時(shí),g(x)<0,f'(x)<0,函數(shù)f(x)單調(diào)遞減.
綜上可得:
當(dāng)a≥0時(shí),函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
當(dāng)a≤-12時(shí),函數(shù)f(x)在(0,+∞)上單調(diào)遞減;
當(dāng)-12