《高一年級 數(shù)學(xué)必修四 模塊考試試題》由會員分享,可在線閱讀,更多相關(guān)《高一年級 數(shù)學(xué)必修四 模塊考試試題(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
高一年級 數(shù)學(xué)必修四 模塊考試試題
答題注意事項:
1.本試卷滿分150分,第Ⅰ卷17道題,滿分100分,
第Ⅱ卷7道題,滿分50分,全卷共24道題;
2.考試用時120分鐘;
3.答題時請將答案寫在試卷的相應(yīng)位置上.
第Ⅰ卷(滿分100分)
一、選擇題 本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,只有
一項符合題目的要求,請將答案填寫在題后的表格中.
1.已知點P()在第三象限,則角在
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.函數(shù),是
A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)
2、
C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)
3.已知與均為單位向量,它們的夾角為,那么等于
A. B. C. D.4
4.已知M是△ABC的BC邊上的中點,若向量=a,= b,則向量等于
A.(a-b) B.(b-a) C.( a+b) D.(a+b)
5.若是△的一個內(nèi)角,且,則的值為
A. B. C. D.
6.已知,則的值是
A.-1 B.1 C.2 D.4
7.在中,有如下四個命題:①; ②;
③若,則為等腰三
3、角形;
④若,則為銳角三角形.其中正確的命題序號是
A.① ② B.① ③ ④ C.② ③ D.② ④
8.函數(shù)在一個周期內(nèi)的圖象如下,此函數(shù)的解析式為
A. B.
C. D.
9.下列各式中,值為的是
A. B.
C. D.
10.已知為銳角,且cos=,cos=,則的值是
A. B. C. D.
二、填空題 本大題共4小題,每小題5分,共20分.請將答案填寫在橫線上.
11.的值為
4、 .
12.已知向量.若向量,則實數(shù)的值是 .
13.若, 且, 則的值是____________.
14.已知,,則的值為 .
三、解答題 本大題共3小題,每小題10分,共30分.解答應(yīng)寫出文字說明,證明過程
或演算步驟.
15.(本題滿分10分)已知,當(dāng)為何值時,
平行時它們是同向還是反向?
16.(本題滿分10分) 已知函數(shù),.
(Ⅰ)求的最大值;
(Ⅱ)若,求的值.
17.(本題滿分10分) 已知函數(shù).
(Ⅰ)求的定義域;
(Ⅱ)若角是第四象限角,且,求.
5、
第Ⅱ卷(滿分50分)
一、選擇題 本大題共2小題,每小題5分,共10分.在每小題給出的四個選項中,只有
一項符合題目的要求,請將答案填寫在題后的【 】中.
18.已知tan(α+β) = , tan(β- )= ,那么tan(α+ )為 【 】
A. B. C. D.
19.的值為 【 】
A. B. C. D.
二、填空題 本大題共2小題,每小題5分,共10分.請將答案填
6、寫在橫線上.
20.的值為.
21.已知=2,則的值為;的值為.
三、解答題 本大題共3小題,每小題10分,共30分.解答應(yīng)寫出文字說明,證明過程
或演算步驟.
22.(本題滿分10分) 已知函數(shù),,那么
(Ⅰ)函數(shù)的最小正周期是什么?
(Ⅱ)函數(shù)在什么區(qū)間上是增函數(shù)?
23.(本題滿分10分)已知向量 =(cos,sin),=(cos,sin),||=.
(Ⅰ)求cos(-)的值;
(Ⅱ)若0<<,-<<0,且sin=-,求sin的值.
24.(本題滿分10分)20070306
7、
已知向量,求
(Ⅰ);
(Ⅱ)若的最小值是,求實數(shù)的值.
益田中學(xué)2007—2008學(xué)年度第一學(xué)期第二學(xué)段
高一年級 數(shù)學(xué)必修四 模塊考試試題
參考答案
(一)本套試題命題范圍:
1.使用教材(人教A版)
2.命題范圍(必修4 全冊)
3.適用學(xué)生(高一年級)
(二)詳細(xì)答案及評分標(biāo)準(zhǔn):
第Ⅰ卷(滿分100分)
一、 選擇題 本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,只有一項符合題目的要求,請將答案填寫在題后的表格中.
題號
1
2
3
4
5
6
7
8
9
10
答案
8、
題號
1
2
3
4
5
6
7
8
9
10
答案
題號
1
2
3
4
5
6
7
8
9
10
答案
題號
1
2
3
4
5
6
7
8
9
10
答案
題號
1
2
3
4
5
6
7
8
9
10
答案
B
A
A
C
D
C
C
A
D
B
題號
1
2
3
4
5
6
7
8
9
10
答案
9、
二、填空題 本大題共4小題,每小題5分,共20分.請將答案填寫在橫線上.
11. 12. 13. 14.
三、解答題 本大題共3小題,每小題10分,共30分.解答應(yīng)寫出文字說明,證明過程或演算步驟.
15.(本題滿分10分)
解: 因為,--------------------------------2分
當(dāng)時,
則-------------------------------------------------2分
解得: ------------------------------------
10、--------------------------------------2分
此時,
==
=.-----------------------------------------------------------2分
所以反向.---------------------------------------------------------------2分
[另解:當(dāng),存在唯一實數(shù),使
即 得:
解得:, 即當(dāng),
這時因為,所以反向.]
16.(本題滿分10分)
解:(Ⅰ)(5分)
=------------------
11、-----------------1分
------------------------------2分
∴的最大值為.--------------------------------2分
(Ⅱ)(5分) 因為,即 -------------------1分
∴ --------------------------------------2分
∴.------------------------------------------2分
17.(本題滿分10分)
解:(Ⅰ)(4分)由,得,
所以f(x)的定義城為.-------------------------
12、-------4分
[另解:由,得
∴
所以f(x)的定義城為]
(Ⅱ)(6分)
?。?----------------------------------------------------------1分
∴.---2分
因為是第四象限角,所以.----------2分
所以.----------------------------------------------------------------1分
第Ⅱ卷(滿分50分)
一、選擇題 本大題共2小題,每小題5分,共10分.在每小題給出的四個選項中,只有一項符合題目的要求,請將答案填寫在題后的【 】
13、中.
18.C 19.D
二、填空題 本大題共2小題,每小題5分,共10分.請將答案填寫在橫線上.
20. 21.(2分); (3分)。
三、解答題 本大題共3小題,每小題10分,共30分.解答應(yīng)寫出文字說明,證明過程或演算步驟.
22.(本題滿分10分)
解:(Ⅰ)(5分)
=
=1+
=-------------------------------------------------2分
=,---------------------------------
14、------------------2分
∴函數(shù)的最小正周期是π.--------------------------------------1分
(Ⅱ)(5分) 由,---------------------------2分
得 --------------------------------------------------------2分
∴函數(shù)的增區(qū)間為:--------------------------------1分
23.(本題滿分10分)
解:(Ⅰ)(5分) ,
. -----------------------------------
15、----1分
,
.---------------------------------2分
即 . ---------------------------------------------------1分
. ------------------------------------------------------------------1分
(Ⅱ)(5分)∵, ∴ ---------------------1分
∵ ,∴ ----------------------------------1分
∵ ,∴ ----------------
16、-------------------------------------1分
∴
.-----------------------------------------------------------2分
24.(本題滿分10分)
解:(Ⅰ)(5分) a·b=------------------2分
| a+b|=-----2分
∵, ∴
∴| a+b|=2cosx.-----------------------------------------------------------------------1分
(Ⅱ)(5分)
即------------------------------------------------2分
∵, ∴
時,當(dāng)且僅當(dāng)取得最小值-1,這與已知矛盾.
時,當(dāng)且僅當(dāng)取最小值
由已知得,解得
時,當(dāng)且僅當(dāng)取得最小值
由已知得,解得,這與相矛盾.
綜上所述,為所求.-------------------------------------------------------3分
高一年級 數(shù)學(xué)必修四 模塊考試試卷 第 8 頁 共 8 頁