2019-2020年高考數(shù)學(xué)第二輪復(fù)習(xí) 統(tǒng)計與概率教學(xué)案
《2019-2020年高考數(shù)學(xué)第二輪復(fù)習(xí) 統(tǒng)計與概率教學(xué)案》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)第二輪復(fù)習(xí) 統(tǒng)計與概率教學(xué)案(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2019-2020年高考數(shù)學(xué)第二輪復(fù)習(xí) 統(tǒng)計與概率教學(xué)案 考綱指要: “統(tǒng)計”是在初中“統(tǒng)計初步”基礎(chǔ)上的深化和擴(kuò)展,本講主要會用樣本的頻率分布估計總體的分布,并會用樣本的特征來估計總體的分布。熱點問題是頻率分布直方圖和用樣本的數(shù)字特征估計總體的數(shù)字特征。統(tǒng)計案例主要包括回歸分析的基本思想及其初步應(yīng)用和獨立性檢驗的基本思想和初步應(yīng)用。 對概率考察的重點為互斥事件、古典概型的概率事件的計算為主,了解隨機(jī)數(shù)的意義,能運(yùn)用模擬方法(包括計算器產(chǎn)生隨機(jī)數(shù)來進(jìn)行模擬)估計概率,初步體會幾何概型的意義。 考點掃描: 1.三種常用抽樣方法:(1)簡單隨機(jī)抽樣;(2)系統(tǒng)抽樣;(3)分層
2、抽樣。 2.用樣本的數(shù)字特征估計總體的數(shù)字特征: (1)眾數(shù)、中位數(shù);(2)平均數(shù)與方差。 3.頻率分布直方圖、折線圖與莖葉圖。 4.線性回歸:回歸直線方程。 5.統(tǒng)計案例:相關(guān)系數(shù)、卡方檢驗, 6.隨機(jī)變量:隨機(jī)變量的概念,離散性隨機(jī)變量的分布列,相互獨立事件、獨立重復(fù)試驗公式,隨機(jī)變量的均值和方差,幾種特殊的分布列:(1)兩點分布;(2)超幾何分布; (3)二項分布;正態(tài)分布。 7隨機(jī)事件的概念、概率;事件間的關(guān)系:(1)互斥事件;(2)對立事件;(3)包含; 事件間的運(yùn)算:(1)并事件(和事件)(2)交事件(積事件) 8古典概型:古典概型的兩大特點;古典概型的概率計算公
3、式。 9幾何概型:幾何概型的概念;幾何概型的概率公式;幾種常見的幾何概型。 考題先知: 例1.為了科學(xué)地比較考試的成績,有些選拔性考試常常會將考試分?jǐn)?shù)轉(zhuǎn)化為標(biāo)準(zhǔn)分,轉(zhuǎn)化關(guān)系式為:(其中x是某位學(xué)生的考試分?jǐn)?shù),是該次考試的平均分,s是該次 考試的標(biāo)準(zhǔn)差,Z稱為這位學(xué)生的標(biāo)準(zhǔn)分).轉(zhuǎn)化成標(biāo)準(zhǔn)分后可能出現(xiàn)小數(shù)和負(fù)值,因此, 又常常再將Z分?jǐn)?shù)作線性變換轉(zhuǎn)化成其他分?jǐn)?shù). 例如某次學(xué)業(yè)選拔考試采用的是T分?jǐn)?shù),線性變換公式是:T=40Z+60. 已知在這次考試中某位考生的考試分?jǐn)?shù)是85,這次考試的平均分是70,標(biāo)準(zhǔn)差是25,則該考生的T分?jǐn)?shù)為 . 分析:正確理解題意,計
4、算所求分?jǐn)?shù)。 解:。 點評:本題如改編為:已知在這次考試中某位考生的考試分?jǐn)?shù)是85,這次考試的平均分是70,標(biāo)準(zhǔn)差是25,而該考生的T分?jǐn)?shù)為84,求T分?jǐn)?shù)的線性變換公式。 例2.隨機(jī)拋擲一個骰子,求所得點數(shù)的數(shù)學(xué)期望。 1 2 3 4 5 6 P 解:拋骰子所得點數(shù)的概率分布為 ∴ 變式1 設(shè)n把外形完全相同的鑰匙,其中只有1把能打開大門,用它
5、們?nèi)ピ囬_門上的鎖,若抽取鑰匙是相對獨立且等可能,每把鑰匙開后都不放回,試求開鎖次數(shù)的數(shù)學(xué)期望與方差。 分析: 求時,由題意知前次沒有打開,恰好第次打開,取發(fā)現(xiàn)規(guī)律后,再推廣到一般。的可能取值為 1 2 … k … n P … … ∴的分布列為 ∴ 由公式可算得方差 變式2 有一幢樓房共19層,現(xiàn)若選擇其中某一層作為會議室,開會時每層去1 人,則會議室設(shè)在第幾層時,可使每人所走過的路程最短(每層樓高度相同)? 分析: 大部分的讀者拿到該題首先想到利用等差數(shù)列的前項和公式建立路程與之間的關(guān)系,然后求最值,這是一種常規(guī)的思路
6、。如果我們換一個角度思考:會議室設(shè)在哪一層是隨機(jī)的,而設(shè)在任一層樓的概率都為,這樣,與上面兩個問題完全相同,所以我們“希望”會議室所在的樓層即為隨機(jī)變量的數(shù)學(xué)期望。由題意得會議室所在的樓層的分布列如下: 1 2 … 19 P … ∴ 于是,會議室設(shè)在第10層為所求。 為什么就是我們所求解問題的最小值呢?請看命題: 對于任何實數(shù)c,若 則。(是樣本方差,為樣本平均數(shù),即) 證明: ∴當(dāng)時取得最小值。 而數(shù)學(xué)期望就是概率意義上的平均數(shù),所以,利用離散隨機(jī)變量的分布列的數(shù)學(xué)期望可解決上述問題的最值問題。 若把19改為,則可進(jìn)一
7、步引申出更為一般的結(jié)論:當(dāng)為奇數(shù)時,會議室應(yīng)設(shè)在層;當(dāng)為偶數(shù)時,會議可設(shè)在或?qū)又械娜魏我粚泳鶟M足題設(shè)要求。 變式3 數(shù)軸上有個定點,其中對應(yīng)的坐標(biāo)分別為為數(shù)軸上動點,坐標(biāo)為,求函數(shù)的最小值。 分析: 該題的常用解決法是利用數(shù)形結(jié)合分類討論。但我們也這樣思考:動點P在x軸上運(yùn)動時,落在哪個位置是隨機(jī)的,盡管問題是個連續(xù)型隨機(jī)變量,但所求函數(shù)的最值仍可用上述方法求得。 P點停在處,的概率分布為 1 2 … n P … ∴ ∴當(dāng)為奇數(shù),在點時,的值最??;當(dāng)為偶數(shù),中任一點時,的值最小。 復(fù)習(xí)智略: 例3.甲有一個放有3個紅球、2
8、個白球、1個黃球的箱子,乙也有一個放有3個紅球、2個白球、1個黃球的箱子,兩人各自從自己的箱子里任取一球比顏色,規(guī)定同色時為甲勝,異色時為乙勝.這個游戲規(guī)則公平嗎?請說明理由。 解析: 由題意,兩人各自從自己的箱子里任取一球比顏色共有=36(種)不同情形,每種情形都是等可能的,記甲獲勝為事件A,則 ,所以甲獲勝的概率小于乙甲獲勝的概率,這個游戲規(guī)則不公平; 變化一:如果甲方偷偷的在自己的箱子里再放了若干個同色球,仍規(guī)定同色時為甲勝,異色時為乙勝,則他勝的概率能達(dá)到嗎? 解析:不妨設(shè)甲在自己的箱子中又放了x個紅球,則他取勝的概率為,同理甲在自己的箱子中又放了x個白球或黃球時,
9、也不能達(dá)到,所以他獲勝的概率仍不能達(dá)到,這個游戲規(guī)則不公平; 變化二: 如果甲方偷偷的在自己的箱子里再放了若干個任意球,仍規(guī)定同色時為甲勝,異色時為乙勝,則他勝的概率能達(dá)到嗎? 解析:不妨設(shè)甲在自己的箱子中又放了x個紅球,、y個白球、z個黃球,則他取勝的概率為, 因為, 所以他獲勝的概率仍不能達(dá)到,這個游戲規(guī)則不公平; 變化三: 甲有一個放有a個紅球、b個白球、c個黃球的箱子,乙也有一個放有a個紅球、b個白球、c個黃球的箱子,兩人各自從自己的箱子里任取一球比顏色,規(guī)定同色時為甲勝,異色時為乙勝.這個游戲規(guī)則公平嗎? 解析: 由題意,兩人各自從自己的箱子里任取一球比顏色共有
10、 =(a+b+c)2 (種)不同情形,每種情形都是等可能的,記甲獲勝為事件A,則, 不妨設(shè) (1)當(dāng)時,則 所以甲獲勝的概率不能達(dá)到,這個游戲規(guī)則不公平; (2)當(dāng)時,設(shè),則, , 若,則,所以甲獲勝的概率恰為,這個游戲規(guī)則是公平的; 若,則,這個游戲規(guī)則也不公平; 若,則,這個游戲規(guī)則也不公平; 變化四: 甲有一個放有a個紅球、b個白球、c個黃球的箱子,乙有一個放有x個紅球、y個白球、z個黃球的箱子,兩人各自從自己的箱子里任取一球比顏色,規(guī)定同色時為甲勝,異色時為乙勝.這個游戲規(guī)則公平嗎? 解析:由題意,兩人各自從自己的箱子里任取一球比顏色分別有和 (種)不同情形,每
11、種情形都是等可能的,記甲獲勝為事件A,則, 當(dāng)時, 這個游戲規(guī)則是公平的,否則,是不公平的. 變化五:在原問題中,如果甲可調(diào)整自己箱子中的球的顏色,但必須確保總球數(shù)仍為6個,由由甲能否達(dá)到游戲規(guī)則公平的目的? 解析:設(shè)甲將自己箱子中的球調(diào)整為x個紅球、y個白球、z個黃球,且x+y+z=6, y x O C(6,0) 則, 令,則x、y滿足約束條件,作出如圖可行域,由可知當(dāng)x=6、y=0時,u有最大值12,此時P(A)有最大值,所以甲能達(dá)到游戲規(guī)則公平的目的。 檢測評估: 1.對滿足A B的非空集合A、B有下列四個命題 ①若任取,則是必然
12、事件;②若,則是不可能事件;
③若任取,則是隨機(jī)事件;④若,則是必然事件.
其中正確命題的個數(shù) ( )
A.4個 B.3個 C.2個 D.1個
2. 在網(wǎng)絡(luò)游戲《變形》中,主人公每過一關(guān)都以的概率變形(即從“大象”變?yōu)椤袄鲜蟆被驈摹袄鲜蟆弊優(yōu)椤按笙蟆保?,若將主人公過n關(guān)不變形的概率計為Pn,則
A.P5>P4 B.P8
13、 4.某公司甲、乙、丙、丁四個地區(qū)分別有150 個、120個、180個、150個銷售點。公司為 了調(diào)查產(chǎn)品銷售的情況,需從這600個銷售點中抽取一個容量為100的樣本,記這項調(diào)查為 ①;在丙地區(qū)中有20個特大型銷售點,要從中抽取7個調(diào)查其收入和售后服務(wù)等情況,記 這項調(diào)查為②。則完成①、②這兩項調(diào)查宜采用的抽樣方法依次是 ( ) A.分層抽樣法,系統(tǒng)抽樣法 B.分層抽樣法,簡單隨機(jī)抽樣法 C.系統(tǒng)抽樣法,分層抽樣法 D.簡單隨機(jī)抽樣法,分層抽樣法 5.xx年春季,我國部分地區(qū)SARS流行,黨和政府采取果斷措施,防治結(jié)合,很快使病情得到控制,下表是某同學(xué)記載的5月
14、1日至5月12日每天北京市SARS病患者治愈者數(shù)據(jù),及根據(jù)這些數(shù)據(jù)繪制出的散點圖: 日期 5.1 5.2 5.3 5.4 5.5 5.6 人數(shù) 100 109 115 118 121 134 日期 5.7 5.8 5.9 5.10 5.11 5.12 人數(shù) 141 152 168 175 186 203 下列說法: ①根據(jù)此散點圖,可以判斷日期與人數(shù)具有線性相關(guān)關(guān)系; ②若日期與人數(shù)具有線性相關(guān)關(guān)系,則相關(guān)系數(shù)r與臨界值r0.05應(yīng)滿足|r|> r0.05; ③根據(jù)此散點圖,可以判斷日期與人數(shù)具有一次函數(shù)關(guān)系,其中正確的個
15、數(shù)為 ( ) A、0個 B、1個 C、2個 D、3個 6.已知約束條件 的可行域為D, 將一枚骰子連投兩次,設(shè)第一次得到的點數(shù) 為x,第二次得到的點數(shù)為y,則點(x, y)落在可行域D內(nèi)的概率為______________. 7.已知A箱內(nèi)有1個紅球和5個白球,B箱內(nèi)有3個白球,現(xiàn)隨意從A箱中取出3個球放入B箱,充分?jǐn)噭蚝笤購闹须S意取出3個球放人4箱,共有_________種不同的取法,又紅球由A箱移人到B箱,再返回到A箱的概率等
16、于___________. 8.兩個相互獨立事件和都不發(fā)生的概率為,發(fā)生不發(fā)生的概率與發(fā)生不發(fā)生的概率相同,則事件發(fā)生的概率是 9.設(shè)一部機(jī)器在一天內(nèi)發(fā)生故障的概率為0 2,機(jī)器發(fā)生故障時全天停止工作 若一周5個工作日里均無故障,可獲利潤10萬元;發(fā)生一次故障可獲利潤5萬元,只發(fā)生兩次故障可獲利潤0萬元,發(fā)生三次或三次以上故障就要虧損2萬元。則一周內(nèi)期望利潤是 。 10.若隨機(jī)事件A在1次試驗中發(fā)生的概率為P(),用隨機(jī)變量表示A在1次試驗中發(fā)生的次數(shù),則方差的最大值是 ,的最大值是 。 11.有一
17、種密碼,明文是由三個字符組成,密碼是由明文對應(yīng)的五個數(shù)字組成,編碼規(guī)則如下表:明文由表中每一排取一個字符組成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,對應(yīng)的密碼由明文對應(yīng)的數(shù)字按相同的次序排成一組成. 第一排 明文字符 A B C D 密碼字符 11 12 13 14 第二排 明文字符 E F G H 密碼字符 21 22 23 24 第三排 明文字符 M N P Q 密碼字符 1 2 3 4 設(shè)隨機(jī)變量ξ表示密碼中不同數(shù)字的個數(shù). (Ⅰ)求P(ξ=2) (Ⅱ)求
18、隨機(jī)變量ξ的分布列和它的數(shù)學(xué)期望. 12.有一個翻硬幣游戲,開始時硬幣正面朝上,然后擲骰子根據(jù)下列①、②、③的規(guī)則翻動硬幣:① 骰子出現(xiàn)1點時,不翻動硬幣;② 出現(xiàn)2,3,4,5點時,翻動一下硬幣,使另一面朝上;③ 出現(xiàn)6點時,如果硬幣正面朝上,則不翻動硬幣;否則,翻動硬幣,使正面朝上. 按以上規(guī)則,在骰子擲了n次后,硬幣仍然正面朝上的概率記為Pn. (Ⅰ)求證:,點(Pn ,Pn+1)恒在過定點(,),斜率為的直線上; (Ⅱ)求數(shù)列{Pn}的通項公式Pn; (Ⅲ)用記號表示數(shù)列{}從第n項到第m項之和,那么對于任意給定的正整數(shù)k,求數(shù)列,,…,,… 的前n項和Tn. 點撥與全解
19、: 1.解:因有空集與非空集兩種情形,所以,命題①錯誤,故選B。 2.解:由題(, 即(,以n+1代n,得, 所以(. 而,所以(). 所以所以偶數(shù)項比它相鄰項大,所以答案為C. 3.根據(jù)正態(tài)分布知:選B 4.選B。 5.因說法①②正確,所以選C。 6.在可行域D中坐標(biāo)為正整數(shù)的點有(1,1),(1,2),所以所求概率為。 7.從A箱中取出3個球有=20種取法,再從B箱中取出3個球有=20種取法,故共有20×20=400種不同的取法. 紅球由A箱中取出的概率為,再從B箱中取回紅球的概率為.則紅球由A箱移入到B箱,再返回到A箱的概率等于P(A·B)=P(A)·p(B)==
20、0.25. 8.解:由條件得,解之得: 。 9 解 以X表示一周5天內(nèi)機(jī)器發(fā)生故障的天數(shù),則X-B(5,0.2),于是X有概率分布P(X=k)=C0.2k0.85-k,k=0,1,2,3,4,5 以Y表示一周內(nèi)所獲利潤,則 Y=g(X)= Y的概率分布為 P(Y=10)=P(X=0)=0.85=0.328 P(Y=5)=P(X=1)=C0.2·0.84=0.410 P(Y=0)=P(X=2)=C·0.22·0.83=0.205 P(Y=-2)=P(X≥3)=1-P(X=0)-P(X=1)-P(X=2)=0.057 故一周內(nèi)的期望利潤為 EY=10×0.
21、328+5×0.410+0×0.205-2×0.057=5.216(萬元) 10.解:,的最大值是; ,的最大值是。 11.解:(Ⅰ)密碼中不同數(shù)字的個數(shù)為2的事件為密碼中只有兩個數(shù)字,注意到密碼的第 1,2列分別總是1,2,即只能取表格第1,2列中的數(shù)字作為密碼. (Ⅱ)由題意可知,ξ的取值為2,3,4三種情形. 若ξ= 3,注意表格的第一排總含有數(shù)字1,第二排總含有數(shù)字2則密碼中只可能取數(shù)字1,2,3或1,2,4. 若 (或用求得). 的分布列為: ξ 2 3 4 p 12.解:(Ⅰ)
22、設(shè)把骰子擲了n+1次,硬幣仍然正面朝上的概率為Pn+1,此時有兩種情況: ① 第n次硬幣正面朝上,其概率為Pn,且第n+1次骰子出現(xiàn)1點或6點,硬幣不動,其概率為;因此,此種情況下產(chǎn)生硬幣正面朝上的概率為. ② 第n次硬幣反面朝上,其概率為1-Pn,且第n+1次骰子出現(xiàn)2,3,4,5點或6點,其概率為; 因此,此種情況下產(chǎn)生硬幣正面朝上的概率為. ∴,變形得 . ∴點(Pn ,Pn+1)恒在過定點(,),斜率為的直線上. (Ⅱ),,又由(Ⅰ)知:, ∴{}是首項為,公比為的等比數(shù)列, ∴,故所求通項公式為. (Ⅲ)解法一:由(Ⅱ)知{}是首項為,公比為的等比數(shù)列,又 ∵()是常數(shù), ∴,,…,,…,也成等比數(shù)列, 且 從而 . 解法二:++…+ .
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案