《(福建專(zhuān)用)2019高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 平面向量、數(shù)系的擴(kuò)與復(fù)數(shù)的引入 5.2 平面向量基本定理及向量的坐標(biāo)表示課件 理 新人教A版.ppt》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《(福建專(zhuān)用)2019高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 平面向量、數(shù)系的擴(kuò)與復(fù)數(shù)的引入 5.2 平面向量基本定理及向量的坐標(biāo)表示課件 理 新人教A版.ppt(26頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、5.2平面向量基本定理 及向量的坐標(biāo)表示,知識(shí)梳理,考點(diǎn)自測(cè),1.平面向量基本定理 如果e1,e2是同一平面內(nèi)的兩個(gè)向量,那么對(duì)于這一平面內(nèi)的任意向量a,有且只有一對(duì)實(shí)數(shù)1,2,使a=.其中,不共線(xiàn)的向量e1,e2叫做表示這一平面內(nèi)所有向量的一組.把一個(gè)向量分解為兩個(gè)的向量,叫做把向量正交分解. 2.平面向量的坐標(biāo)表示 在平面直角坐標(biāo)系中,分別取與x軸、y軸方向相同的兩個(gè)單位向量i,j作為基底,a為坐標(biāo)平面內(nèi)的任意向量,以坐標(biāo)原點(diǎn)O為起點(diǎn)作 =a,由平面向量基本定理可知,有且只有一對(duì)實(shí)數(shù)x,y,使得=xi+yj,因此a=xi+yj,我們把實(shí)數(shù)對(duì)叫做向量a的坐標(biāo),記作a=.,不共線(xiàn),1e1+
2、2e2,基底,互相垂直,(x,y),(x,y),知識(shí)梳理,考點(diǎn)自測(cè),3.平面向量的坐標(biāo)運(yùn)算 (1)向量坐標(biāo)的求法 若向量的起點(diǎn)是坐標(biāo)原點(diǎn),則終點(diǎn)坐標(biāo)即為向量的坐標(biāo). 設(shè)A(x1,y1),B(x2,y2),則 =. (2)向量的加法、減法、數(shù)乘向量及向量的模 設(shè)a=(x1,y1),b=(x2,y2),則a+b=, a-b=,a=,,(x2-x1,y2-y1),(x1+x2,y1+y2),(x1-x2,y1-y2),(x1,y1),知識(shí)梳理,考點(diǎn)自測(cè),4.平面向量共線(xiàn)的坐標(biāo)表示 設(shè)a=(x1,y1),b=(x2,y2),則ab . 5.向量的夾角 已知兩個(gè)向量a和b,作 則AOB=(0
3、180)叫做向量a與b的夾角.如果向量a與b的夾角是90,我們說(shuō)a與b垂直,記作.,x1y2-x2y1=0,非零,ab,知識(shí)梳理,考點(diǎn)自測(cè),1.若a與b不共線(xiàn),a+b=0,則==0. 2.已知 (,為常數(shù)),則A,B,C三點(diǎn)共線(xiàn)的充要條件是+=1.,知識(shí)梳理,考點(diǎn)自測(cè),2,3,4,1,5,1.判斷下列結(jié)論是否正確,正確的畫(huà)“”,錯(cuò)誤的畫(huà)“”. (1)平面內(nèi)的任何兩個(gè)向量都可以作為一組基底.() (2)平面向量不論經(jīng)過(guò)怎樣的平移變換之后其坐標(biāo)不變.() (4)已知向量a,b是一組基底,若實(shí)數(shù)1,1,2,2滿(mǎn)足1a+1b=2a+2b,則1=2,1=2.(),答案,知識(shí)梳理,考點(diǎn)自測(cè),2
4、,3,4,1,5,2.(2017河北石家莊二模,理9)已知向量a=(1,m),b=(m,1),則“m=1”是“ab”的() A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件,答案,解析,知識(shí)梳理,考點(diǎn)自測(cè),2,3,4,1,5,3.已知向量a=(2,6),b=(-1,).若ab,則=.,答案,解析,知識(shí)梳理,考點(diǎn)自測(cè),2,3,4,1,5,4.(2017山西太原一模,理12)已知a=(1,-1),b=(t,1),若(a+b)(a-b),則實(shí)數(shù)t=.,答案,解析,知識(shí)梳理,考點(diǎn)自測(cè),2,3,4,1,5,5.設(shè)向量a=(m,1),b=(1,2),且|a+b|2=|a|2+
5、|b|2,則實(shí)數(shù)m=.,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,(3)設(shè)e1,e2是平面內(nèi)的一組基向量,且a=e1+2e2,b=-e1+e2,則向量e1+e2可以表示為另一組基向量a,b的線(xiàn)性組合,即e1+e2=.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,思考用平面向量基本定理解決問(wèn)題的一般思路是什么? 解題心得1.應(yīng)用平面向量基本定理表示向量的實(shí)質(zhì)是利用平行四邊形法則或三角形法則進(jìn)行向量的加、減或數(shù)乘運(yùn)算. 2.用平面向量基本定理解決問(wèn)題的一般思路是:先選擇一組基底,再通過(guò)向量的加、減、數(shù)乘以及向量平
6、行的充要條件,把相關(guān)向量用這一組基底表示出來(lái).,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,例3(1)已知平面向量a=(1,1),b=(1,-1),則向量 A.(-2,-1)B.(-2,1) C.(-1,0)D.(-1,2) A.(2,3)B.(-2,3) C.(3,1)D.(3,-1),答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,思考利用向量的坐標(biāo)運(yùn)算解決問(wèn)題的一般思路是什么? 解題心得向量的坐標(biāo)運(yùn)算主要是利用加、減、數(shù)乘運(yùn)算法則進(jìn)行的.解題過(guò)程中,常利用“向量相等,則其坐
7、標(biāo)相同”這一原則,通過(guò)列方程(組)來(lái)進(jìn)行求解.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,對(duì)點(diǎn)訓(xùn)練3(1)在A(yíng)BCD中,AC為一條對(duì)角線(xiàn),若 A.(-2,-4)B.(-3,-5) C.(3,5)D.(2,4) (2)已知向量a=(2,-1),b=(0,1),則|a+2b|=(),答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,例4平面內(nèi)給定三個(gè)向量a=(3,2),b=(-1,2),c=(4,1). (1)求滿(mǎn)足a=mb+nc的實(shí)數(shù)m,n; (2)若(a+kc)(2b-a),求實(shí)數(shù)k.,答案,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,思考向量共線(xiàn)有哪幾種表示形式?兩個(gè)向量共線(xiàn)的充要條件有哪些作用? 解題心得1.向量共線(xiàn)
8、的兩種表示形式 設(shè)a=(x1,y1),b=(x2,y2),aba=b(b0);abx1y2-x2y1=0.至于使用哪種形式,應(yīng)視題目的具體條件而定,一般情況涉及坐標(biāo)的應(yīng)用. 2.兩個(gè)向量共線(xiàn)的充要條件的作用 判斷兩個(gè)向量是否共線(xiàn)(或平行),可解決三點(diǎn)共線(xiàn)的問(wèn)題;另外,利用兩個(gè)向量共線(xiàn)的充要條件可以列出方程(組),求出未知數(shù)的值.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,對(duì)點(diǎn)訓(xùn)練4(1)(2017安徽馬鞍山一模)已知向量a=(1,2),b=(x,6),且ab,則|a-b|=. (2)在A(yíng)BC中,角A,B,C所對(duì)的邊分別為a,b,c,設(shè)向量p=(a+c,b),q=(b-a,c-a),若pq,則角C的大小為
9、.,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,1.只要兩個(gè)向量不共線(xiàn),就可以作為平面的一組基底,對(duì)基底的選取不唯一,平面內(nèi)任意向量a都可以用這個(gè)平面的一組基底e1,e2線(xiàn)性表示,且在基底確定后,這樣的表示是唯一的. 2.平面向量基本定理的本質(zhì)是運(yùn)用向量加法的平行四邊形法則,將向量進(jìn)行分解. 3.向量的坐標(biāo)表示的本質(zhì)是向量的代數(shù)表示,其中坐標(biāo)運(yùn)算法則是運(yùn)算的關(guān)鍵,通過(guò)坐標(biāo)運(yùn)算可將一些幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題處理,從而用向量可以解決平面解析幾何中的許多相關(guān)問(wèn)題. 4.在向量的運(yùn)算中要注意待定系數(shù)法、方程思想和數(shù)形結(jié)合思想的運(yùn)用.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,5.向量中必須掌握的三個(gè)結(jié)論 (1)若a與b不共線(xiàn),a+b=0,則==0; (2)已知 (,為常數(shù)),則A,B,C三點(diǎn)共線(xiàn)的充要條件是+=1; (3)平面向量的基底中一定不含零向量. 1.要注意點(diǎn)的坐標(biāo)和向量的坐標(biāo)之間的關(guān)系,向量的終點(diǎn)坐標(biāo)減去起點(diǎn)坐標(biāo)就是向量坐標(biāo),當(dāng)向量的起點(diǎn)是原點(diǎn)時(shí),其終點(diǎn)坐標(biāo)就是向量坐標(biāo). 2.若a,b為非零向量,當(dāng)ab時(shí),a,b的夾角為0或180,求解時(shí)容易忽視其中一種情形而導(dǎo)致出錯(cuò).,