《2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第十章 復(fù)數(shù)、算法初步、統(tǒng)計(jì)與統(tǒng)計(jì)案例 第2節(jié) 算法初步課件 文 新人教A版.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第十章 復(fù)數(shù)、算法初步、統(tǒng)計(jì)與統(tǒng)計(jì)案例 第2節(jié) 算法初步課件 文 新人教A版.ppt(34頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、,,復(fù)數(shù)、算法初步、 統(tǒng)計(jì)與統(tǒng)計(jì)案例,第十章,,,,第二節(jié)算法初步,1.了解算法的含義,了解算法的思想2.理解程序框圖的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)3.了解幾種基本算法語句輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句的含義,欄,目,導(dǎo),航,1常用程序框及其功能,起始和結(jié)束,輸入和輸出的信息,賦值計(jì)算,先后順序,2三種基本邏輯結(jié)構(gòu)及相應(yīng)語句,DO,WHILE,WEND,1判斷下列結(jié)論的正誤(正確的打“”,錯(cuò)誤的打“”) (1)算法只能解決一個(gè)問題,不能重復(fù)使用() (2)一個(gè)程序框圖一定包含順序結(jié)構(gòu),但不一定包含條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)() (3)算法可以無限操作下去() (4)
2、條件結(jié)構(gòu)的出口有兩個(gè),但在執(zhí)行時(shí),只有一個(gè)出口是有效的(), ,D,3(P25A例5改編)如圖為計(jì)算y|x|函數(shù)值的程序框圖,則此程序框圖中的判斷框內(nèi)應(yīng)填___________.,解析輸入x應(yīng)判斷x是否大于等于零,由圖知判斷框應(yīng)填x<0?.,x<0?,D,5(2019廣東佛山模擬)執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是 () A5B1 C3D11,解析開始S1,n1, 第一次循環(huán):S1(2)11,n2; 第二次循環(huán):S1(2)23,n3; 第三次循環(huán):S3(2)35,n4, 此時(shí)44不成立,退出循環(huán),故輸出S5.,A,,1閱讀如圖所示程序框圖若輸入x為3,則輸出的y的值為 ()
3、A24B25 C30D40,自主 完成,D,解析a3218,b835,y8540.,,2執(zhí)行如圖所示的程序框圖,如果輸入的t1,3,則輸出的s屬于() A3,4B5,2 C4,3D2,5,A,B,,解析由程序框圖知該程序輸出的是存在零點(diǎn)的奇函數(shù),選項(xiàng)A、C中的函數(shù)雖然是奇函數(shù),但在給定區(qū)間上不存在零點(diǎn),故排除A、C選項(xiàng)D中的函數(shù)是偶函數(shù),故排除D,變式探究 若將題2判斷框中的條件改為“t1?”,則輸出的s的范圍是______________.,5,9,順序結(jié)構(gòu)和條件結(jié)構(gòu)的運(yùn)算方法 (1)順序結(jié)構(gòu)是最簡(jiǎn)單的算法結(jié)構(gòu),語句與語句之間、框與框之間是按從上到下的順序進(jìn)行的解決此類問題,只需分清運(yùn)算步驟
4、,賦值量及其范圍進(jìn)行逐步運(yùn)算即可 (2)條件結(jié)構(gòu)中條件的判斷關(guān)鍵是明確條件結(jié)構(gòu)的功能,然后根據(jù)“是”的分支成立的條件進(jìn)行判斷 (3)對(duì)于條件結(jié)構(gòu),無論判斷框中的條件是否成立,都只能執(zhí)行兩個(gè)分支中的一個(gè),不能同時(shí)執(zhí)行兩個(gè)分支,循環(huán)結(jié)構(gòu)是高考命題的一個(gè)熱點(diǎn),幾乎年年考查,多以選擇題、填空題的形式呈現(xiàn),試題多為容易題或中檔題 考向1:由程序框圖求輸出(輸入)的值 (1)(2018天津卷)閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,若輸入N的值為20,則輸出T的值為 () A1B2 C3D4,多維 探究,B,,(2)(2017全國(guó)卷)執(zhí)行如圖所示的程序框圖,為使輸出S的值小于91,則輸入的正整數(shù)N的最
5、小值為() A5B4 C3D2,D,,循環(huán)結(jié)構(gòu)程序框圖求輸出結(jié)果的方法 解決此類問題最常用的方法是列舉法,即依次執(zhí)行循環(huán)體中的每一步,直到循環(huán)終止,但在執(zhí)行循環(huán)體的過程中: 第一,要明確是當(dāng)型循環(huán)結(jié)構(gòu)還是直到型循環(huán)結(jié)構(gòu),根據(jù)各自特點(diǎn)執(zhí)行循環(huán)體; 第二,要明確框圖中的累加變量,明確每一次執(zhí)行循環(huán)體前和執(zhí)行循環(huán)體后,變量的值發(fā)生的變化; 第三,要明確循環(huán)終止的條件是什么,什么時(shí)候要終止執(zhí)行循環(huán)體,B,D,完善程序框圖的方法 完善程序框圖問題,結(jié)合初始條件和輸出結(jié)果,分析控制循環(huán)的變量應(yīng)滿足的條件或累加、累乘的變量的表達(dá)式,B,程序框圖補(bǔ)全問題的求解方法 (1)先假設(shè)參數(shù)的判斷條件滿足或不滿足 (2
6、)運(yùn)行循環(huán)結(jié)構(gòu),一直到運(yùn)行結(jié)果與題目要求的輸出結(jié)果相同為止 (3)根據(jù)此時(shí)各個(gè)變量的值,補(bǔ)全程序框圖,訓(xùn)練1閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,若輸入N的值為24,則輸出N的值為 () A0B1 C2D3,C,,訓(xùn)練2如圖所示的程序框圖,該算法的功能是 () A計(jì)算(120)(221)(322)(n12n)的值 B計(jì)算(121)(222)(323)(n2n)的值 C計(jì)算(123n)(2021222n1)的值 D計(jì)算123(n1)(2021222n)的值,解析初始值k1,S0,第1次進(jìn)入循環(huán)體時(shí),S120,k2;當(dāng)?shù)?次進(jìn)入循環(huán)體時(shí),S120221,k3,;給定正整數(shù)n,當(dāng)kn時(shí),最后一次進(jìn)入循環(huán)體,則有S120221n2n1,kn1,終止循環(huán)體,輸出S(123n)(2021222n1),C,素養(yǎng)練公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為______.(參考數(shù)據(jù):sin150.258 8,sin7.50.130 5),24,,