3、要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=(0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設(shè)f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達式;
(2)隔熱層修建多厚時,總費用f(x)達到最???并求最小值.
解:(1)設(shè)隔熱層厚度為x cm,
由題設(shè),每年能源消耗費用為C(x)=(0≤x≤10),
再由C(0)=8,得k=40,因此C(x)=(0≤x≤10).
而建造費用為C1(x)=6x.
最后得隔熱
4、層建造費用與20年的能源消耗費用之和為
f(x)=20C(x)+C1(x)
=20×+6x=+6x(0≤x≤10).
(2)f′(x)=6-.
令f′(x)=0,即=6,
解得x=5或x=-(舍去).
當(dāng)0≤x<5時,f′(x)<0;當(dāng)50.
故x=5是f(x)的最小值點,
對應(yīng)的最小值為f(5)=6×5+=70.
當(dāng)隔熱層修建5 cm厚時,總費用達到最小值70萬元.
[A級 雙基鞏固]
一、填空題
1.今有一組實驗數(shù)據(jù)如下:
t
1.99
3.0
4.0
5.1
6.12
v
1.5
4.04
7.5
12
5、
18.01
現(xiàn)準備用下列函數(shù)中的一個近似地表示這些數(shù)據(jù)滿足的規(guī)律,其中最接近的一個是________.
①v=log2t; ?、趘=logt;
③v=; ④v=2t-2.
解析:由表中數(shù)據(jù)可知,當(dāng)t越大時,v遞增的速度越快,而v=log2t遞增速度較慢,v=logt遞減,v=2t-2勻速,只有v=符合這一特征.
答案:③
2.某學(xué)校要裝備一個實驗室,需要購置實驗設(shè)備若干套,與廠家協(xié)商,同意按出廠價結(jié)算,若超過50套就可以以每套比出廠價低30元給予優(yōu)惠,如果按出廠價購買應(yīng)付a元,但再多買11套就可以按優(yōu)惠價結(jié)算恰好也付a元(價格為整數(shù)),則a的值為________.
解析:設(shè)按
6、出廠價y元購買x套(x≤50)應(yīng)付a元,
則a=xy,又a=(y-30)(x+11),又x+11>50,即x>39,
∴39<x≤50,∴xy=(y-30)(x+11),
∴x=y(tǒng)-30,又x、y∈N*且39<x≤50,
∴x=44,y=150,
∴a=44×150=6600元.
答案:6600元
3.某地2002年底人口為500萬,人均住房面積為6 m2,如果該城市人口平均每年增長率為1%.問為使2012年底該城市人均住房面積增加到7 m2,平均每年新增住房面積至少為________萬 m2.(精確到1萬 m2,1.0110≈1.1046)
解析:到2012年底該城市人口有5
7、00×(1+1%)10≈552.3萬人,則≈87(萬 m2).
答案:87
4.某工廠生產(chǎn)某種產(chǎn)品固定成本為2000萬元,并且每生產(chǎn)一單位產(chǎn)品,成本增加10萬元.又知總收入K是單位產(chǎn)品數(shù)Q的函數(shù),K(Q)=40Q-Q2,則總利潤L(Q)的最大值是______萬元.
答案:2500
5.(2010·高考山東卷改編)已知某生產(chǎn)廠家的年利潤y(單位:萬元)與年產(chǎn)量x(單位:萬件)的函數(shù)關(guān)系式為y=-x3+81x-234,則使該生產(chǎn)廠家獲取最大年利潤的年產(chǎn)量為________.
解析:y′=-x2+81,令y′=0得x=9,且經(jīng)討論知x=9是函數(shù)的極大值點,所以廠家獲得最大年利潤的年產(chǎn)量是9
8、萬件.
答案:9萬件
6.某公司一年購買某種貨物400噸,每次都購買x噸,運費為4萬元/次,一年的總存儲費用為4x 萬元,要使一年的總運費與總存儲費用之和最小,則x=________噸.
解析:每年購買次數(shù)為,
∴總費用=·4+4x≥2=160.
當(dāng)且僅當(dāng)=4x,即x=20時等號成立.
故x=20.
答案:20
7.在測量某物理量的過程中,因儀器和觀察的誤差,使得n次測量分別得到a1,a2,…,an共n個數(shù)據(jù),我們規(guī)定所測量物理量的“最佳近似值a”是這樣一個量:與其它近似值比較,a與各數(shù)據(jù)的差的平方和最小,依此規(guī)定,從a1,a2,…,an,推出的a=________.
解析:
9、設(shè)近似值為x,則f(x)=(x-a1)2+(x-a2)2+…+(x-an)2取最小值時的x即為a,由f(x)=nx2-2(a1+a2+…+an)x+(a+a+…+a)知當(dāng)x=時,f(x)最?。?
答案:(a1+a2+…+an)
8.某超市為了吸引顧客,采取“滿一百送二十,連環(huán)送”的酬賓促銷方式,即顧客在店內(nèi)花錢滿100元(可以是現(xiàn)金,也可以是現(xiàn)金與獎勵券合計)就送20元獎勵券,滿200元就送40元獎勵券,滿300元就送60元獎勵券….當(dāng)日一位顧客共花現(xiàn)金7020元,如果按照酬賓促銷方式,他實際最多能購買________元的商品.
解析:7000元應(yīng)給獎勵券1400元,1400元應(yīng)給獎勵券2
10、80元,280元加上7020元余下20元滿300元應(yīng)給獎勵券60元.
故最多能購買7000+1400+280+60+20=8760元的商品.
答案:8760
二、解答題
9.某公司是一家專做產(chǎn)品A的國內(nèi)外銷售的企業(yè),第一批產(chǎn)品A上市銷售40天內(nèi)全部售完.該公司對第一批產(chǎn)品A上市后的國內(nèi)外市場銷售情況進行了跟蹤調(diào)查,調(diào)查結(jié)果如圖中①、②、③所示,其中圖①中的折線表示的是國外市場的日銷售量與上市時間的關(guān)系;圖②中的拋物線表示國內(nèi)市場的日銷售量與上市時間的關(guān)系;圖③中的折線表示的是每件產(chǎn)品A的銷售利潤與上市時間的關(guān)系(國內(nèi)外市場相同).
(1)分別寫出國外市場的日銷售量f(t)、國內(nèi)市場的
11、日銷售量g(t)與第一批產(chǎn)品A上市時間t的關(guān)系式;
(2)第一批產(chǎn)品A上市后的哪幾天,這家公司的日銷售利潤超過6300萬元?
解:(1)f(t)=,
g(t)=-t2+6t(0≤t≤40).
(2)每件產(chǎn)品A的銷售利潤h(t)與上市時間t的關(guān)系為
h(t)=
設(shè)這家公司的日銷售利潤為F(t),則
F(t)=
=.
當(dāng)0≤t≤20時,F(xiàn)′(t)=-t2+48t=t(48-t)≥0,
故F(t)在[0,20]上單調(diào)遞增,此時F(t)的最大值是F(20)=6000<6300;
當(dāng)20<t≤30時,令60(-t2+8t)>6300,
解得<t<30;
當(dāng)30
12、F(t)=60(-t2+240)<60(-×302+240)=6300.
故第一批產(chǎn)品A上市后第24天到第30天前,這家公司的日銷售利潤超過6300萬元.
10.某隧道長2150 m,通過隧道的車速不能超過20 m/s.一列有55輛車身長都為10 m的同一車型的車隊(這種型號的車能行駛的最高速為40 m/s),勻速通過該隧道,設(shè)車隊的速度為x m/s,根據(jù)安全和車流的需要,當(dāng)0<x≤10時,相鄰兩車之間保持20 m的距離;當(dāng)10<x≤20時,相鄰兩車之間保持(x2+x)m的距離.自第1輛車車頭進入隧道至第55輛車尾離開隧道所用的時間為y(s).
(1)將y表示為x的函數(shù);
(2)求車隊
13、通過隧道時間y的最小值及此時車隊的速度.(≈1.73)
解:(1)當(dāng)0<x≤10時,
y==,
當(dāng)10<x≤20時,
y=
=+9x+18,
所以,y=.
(2)當(dāng)x∈(0,10]時,在x=10時,ymin==378(s).
當(dāng)x∈(10,20]時,y=+9x+18≥18+2×
=18+180≈329.4(s),
當(dāng)且僅當(dāng)9x=,即x≈17.3(m/s)時取等號.
因為17.3∈(10,20],
所以當(dāng)x=17.3(m/s)時,ymin=329.4(s),
因為378>329.4,
所以,當(dāng)車隊的速度為17.3(m/s)時,車隊通過隧道時間y有最小值329.4(s
14、).
[B級 能力提升]
一、填空題
1.某工程由A,B,C,D四道工序組成,完成它們需用時間依次為2,5,x,4天.四道工序的先后順序及相互關(guān)系是:A,B可以同時開工;A完成后,C可以開工;B、C完成后,D可以開工.若該工程總時間為9天,則完成工序C需要的天數(shù)x最大是________.
解析:分析題意可知,B、D工序不能同時進行,
∴B、D工序共需5+4=9天,
而完成總工序的時間為9天,
表明A、B同時開工,A完成后C開工且5≥2+x,
∴x≤3,故x最大值為3.
答案:3
2.
為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣
15、中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數(shù)關(guān)系式為y=()t-a(a為常數(shù)),如圖所示.根據(jù)圖中提供的信息,回答下列問題:
(1)從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時間t(小時)之間的函數(shù)關(guān)系式為________;
(2)據(jù)測定:當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進教室,那么從藥物釋放開始,至少需要經(jīng)過________小時,學(xué)生才能回到教室.
解析:(1)由圖可設(shè)y=kt(0≤t≤),把點(0.1,1)分別代入y=kt和y=()t-a,
得k=10,a=0.1,
∴y=.
(2)由()t-0.1<0.25,得t>
16、0.6.
答案:(1)y= (2)0.6
3.江蘇舜天足球俱樂部準備為救助失學(xué)兒童在江蘇省體育中心體育場舉行一場足球義賽,預(yù)計賣出門票2.4萬張,票價有3元、5元和8元三種,且票價3元和5元的張數(shù)的積為0.6萬張.設(shè)x是門票的總收入,經(jīng)預(yù)算,扣除其他各項開支后,該俱樂部的純收入為函數(shù)y=lg2x,則這三種門票分別為____________萬張時可以為失學(xué)兒童募捐的純收入最大.
解析:該函數(shù)模型y=lg2x已給定,因而只需要將條件信息提取出來,按實際情況代入,應(yīng)用于函數(shù)即可解決問題.
設(shè)3元、5元、8元門票的張數(shù)分別為 a、b、c,則
①代入③有x=19.2-(5a+3b)≤19.
17、2-2=13.2(萬元),
當(dāng)且僅當(dāng)時等號成立,
解得a=0.6,b=1,所以c=0.8.
由于y=lg2x為增函數(shù),即此時y也恰有最大值.
故三種門票分別為0.6、1、0.8萬張時可以為失學(xué)兒童募捐的純收入最大.
答案:0.6、1、0.8
4.(2010·高考江蘇卷)將邊長為1 m的正三角形薄鐵皮沿一條平行于某邊的直線剪成兩塊,其中一塊是梯形,記s=,則s的最小值是________.
解析:設(shè)剪成的小正三角形的邊長為x.
則s==·(0<x<1),
s′=·=-·,
令s′=0,得x=或x=3(舍去).
即x=是s的極小值點且是最小值點.
∴smin=·=.
答案:
18、
二、解答題
5.某商品每件成本9元,售價30元,每星期賣出432件,如果降低價格,銷售量可以增加,且每星期賣出的商品件數(shù)與商品單價的降低值x(單位:元,0≤x≤30)的平方成正比.已知商品單價降低2元時,一星期賣出24件.
(1)將一個星期的商品銷售利潤表示成x的函數(shù);
(2)如何定價才能使一個星期的商品銷售利潤最大?
解:(1)設(shè)商品降價x元,則多賣的商品數(shù)為kx2,若記商品在一個星期的獲利為f(x),則依題意有
f(x)=(30-x-9)(432+kx2)=(21-x)(432+kx2).
又由已知條件可知,24=k·22,于是有k=6,
所以f(x)=-6x3+126x
19、2-432x+9072,x∈[0,30].
(2)根據(jù)(1),可得f′(x)=-18x2+252x-432
=-18(x-2)(x-12).
x
[0,2)
2
(2,12)
12
(12,30]
f′(x)
-
0
+
0
-
f(x)
↘
極小
↗
極大
↘
故x=12時,f(x)取極大值,因為f(0)=9072,f(12)=11664,所以定價為30-12=18(元)能使一個星期的商品銷售利潤最大.
6.(2011·高考湖南卷)
如圖,長方體物體E在雨中沿面P(面積為S)的垂直方向作勻速移動,速度為v(v>0),雨速沿E移動方向的分速度為
20、c(c∈R).E移動時單位時間內(nèi)的淋雨量包括兩部分:(1)P或P的平行面(只有一個面淋雨)的淋雨量,假設(shè)其值與|v-c|×S成正比,比例系數(shù)為;(2)其他面的淋雨量之和,其值為.記y為E移動過程中的總淋雨量.當(dāng)移動距離d=100,面積S=時,
(1)寫出y的表達式;
(2)設(shè)0