喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:414951605 或 1304139763】
==========================================喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:414951605 或 1304139763】
==========================================
編 號 無錫太湖學院 畢 業(yè) 設 計 ( 論 文 ) 題目: 汽車發(fā)動機油路測量 設備的機構(gòu)設計 信 機 系 機 械 工 程 及 自 動 化 專 業(yè) 學 號: 0923154 學生姓名: 孫墅陽 指導教師: 范圣耀 (職稱:副教授) (職稱: ) 2013 年 5 月 25 日 無錫太湖學院本科畢業(yè)設計(論文) 誠 信 承 諾 書 本人鄭重聲明:所呈交的畢業(yè)設計(論文) 汽車發(fā)動機油 路壓力測量設備的機構(gòu)設計 是本人在導師的指導下獨立進 行研究所取得的成果,其內(nèi)容除了在畢業(yè)設計(論文)中特別 加以標注引用,表示致謝的內(nèi)容外,本畢業(yè)設計(論文)不包 含任何其他個人、集體已發(fā)表或撰寫的成果作品。 班 級: 機械 93 學 號: 0923154 作者姓名: 2013 年 5 月 25 日 I 無 錫 太 湖 學 院 信 機 系 機 械 工 程 及 自 動 化 專 業(yè) 畢 業(yè) 設 計 論 文 任 務 書 一、題目及專題: 1、題目 汽車發(fā)動機油路壓力測量設備的機構(gòu)設計 2、專題 二、課題來源及選題依據(jù) 結(jié)合自己實習經(jīng)驗觀察,國內(nèi)油路壓力測量設備尚未普及,生產(chǎn) 效率的提升空間很大。前景一片廣闊 三、本設計(論文或其他)應達到的要求: 1、了解發(fā)動機及其壓力設備的基本結(jié)構(gòu) 2、了解內(nèi)燃機異常噴射現(xiàn)象 3、充分理解機械傳動的計算并完成相關圖紙,折合 A0 圖紙不少 于 3 張 4、完成機械類相關文獻翻譯 8000 字符左右 四、接受任務學生: 機械 93 班 姓名 孫墅陽 II 五、開始及完成日期: 自 2012 年 11 月 7 日 至 2013 年 5 月 25 日 六、設計(論文)指導(或顧問): 指導教師 簽名 簽名 簽名 教 研 室 主 任 學科組組長研究所 所長簽名 系主任 簽名 2012 年 11 月 12 日 III 摘 要 柴油機供油系統(tǒng)多參數(shù)的電測量,為研究供油系統(tǒng)噴射特性提供了手段。而且,目 前在評估新品開發(fā)設計的噴油泵和噴油嘴的性能時,在產(chǎn)品改進和新品試制過程中,為 了獲得良好的性能指標,往往需要對燃油噴射系統(tǒng)進行大量的調(diào)試工作,也常以多參數(shù) 的電測量作為考核項目之一。柴油發(fā)動機油路壓力測量設備相關油管嘴端壓力與針閥體 壓力室壓力噴油泵的參數(shù)選擇及其對柴油機性能的影響,以及柴油內(nèi)燃機異常噴射現(xiàn)象 和柴油發(fā)動機油路壓力測量設備相關油管嘴端壓力與針閥體壓力室壓力。 關鍵詞:壓力噴油泵的參數(shù)選擇;內(nèi)燃機異常噴射現(xiàn)象;相關油管嘴端壓力 IV Abstract Diesel engine fuel supply system electrical multi-parameter measurement, provides the means to study the injection characteristics of the fuel supply system. Moreover, in the assessment of the performance of new product development and design of the fuel injection pump and injector, in the process of product improvement and new trial, in order to obtain good performance indicators, often require the fuel injection system debugging work, often the power of multi- parameter measurements as one of the assessment project. Diesel engine line pressure measurement equipment the related tubing pressure of the mouth end of the needle valve body pressure chamber pressure fuel pump parameters selection and its impact on diesel engine performance, as well as the abnormal jet phenomenon of the diesel engine and diesel engine line pressure measurement equipment tubing mouth end pressure and needle valve body pressure chamber pressure. Keywords: pressure fuel pump parameter selection; the abnormal internal combustion engine jet phenomenon; tubing mouth end pressure V 目 錄 摘 要 .III ABSTRACT .IV 目 錄 .V 1 緒論 .1 1.1 設計目的 .1 1.2 柴油發(fā)動機的燃料噴射裝置概述 .1 1.3 噴油過程 .2 1.4 幾何供油規(guī)律和噴油規(guī)律的定義 .3 1.5 噴油器總成 .3 2 柴油發(fā)動機油路壓力測量設備的設計 .5 2.1 柴油發(fā)動機油路壓力測量設備控制系統(tǒng)概述 .5 2.2 柴油發(fā)動機油路壓力測量設備的原理 .7 2.3 柴油發(fā)動機油路壓力測量設備相位調(diào)整 .7 2.4 柴油發(fā)動機油路壓力測量設備測量線路 .7 2.5 柴油發(fā)動機油路壓力測量設備試驗結(jié)果分析 .10 2.6 柴油發(fā)動機油路壓力測量設備校驗壓電壓力傳感器 .11 2.7 柴油發(fā)動機油路壓力測量設備相關油管嘴端壓力與針閥體壓力室壓力 .11 3 機械傳動選用及設計計算 .12 3.1 圓錐齒輪的計算 .12 3.2 主傳動軸的相關概算 .13 3. 3 花鍵聯(lián)軸器的計算 .14 3.4 壓力波動的分析 .15 3.5 燃油的可壓縮性 .15 3.6 管路的容積變化 .16 3.7 管路中的壓力波動 .16 3.8 噴油泵的參數(shù)選擇及其對柴油機性能的影響 .17 3.9 噴油泵的速度特性校正 .19 3.10 可變減壓容積 .19 3.11 可變的減壓作用 .19 3.12 高壓油管 .20 3.13 柴油內(nèi)燃機異常噴射現(xiàn)象 .20 3.14 二次噴射 .21 3.15 穩(wěn)定噴射 .22 4 測試精度 .23 總結(jié) .26 致 謝 .28 參考文獻 .29 汽車發(fā)動機油路測量設備的機構(gòu)設計 1 1 緒論 1.1 設計目的 柴油機供油系統(tǒng)多參數(shù)的電測量,為研究供油系統(tǒng)噴射特性提供了手段。而且,目 前在評估新品開發(fā)設計的噴油泵和噴油嘴的性能時,也常以多參數(shù)的電測量作為考核項 目之一。因此,測量的精確性就顯得越發(fā)重要了。 在以往的電測試驗中,出現(xiàn)過油嘴已噴油的工況下,測出的油管壓力低于油嘴開啟 壓力的情況。例如在二零零二年八月高速一號泵的電測試驗中,油嘴開啟壓力為 12。5MPA,當油泵轉(zhuǎn)速為 250RPM 時,測出的嘴端最高壓力只有 11。69MPA。還有, 日本 VE 泵在二零零二年九月的試驗中,油嘴開啟壓力為 18。13MPA(185kgf/cm 2) ,在 油泵轉(zhuǎn)速為 390RPM 時,測出的嘴端最高壓力只有 17。013MPA(173。6 kgf/cm2) 。在上 述兩例試驗中,油嘴針閥均已開啟噴油。 現(xiàn)有使用的傳感器、信號轉(zhuǎn)換儀、數(shù)據(jù)處理儀、都是具有世界先進水平的儀器。精 度很高,隨機誤差很小。這就要考慮是否存在較大的系統(tǒng)誤差,即要從測試方法的角度 去考慮了。目前一般采用壓電式傳感器測量壓力。壓電傳感器因其機械強度高,體積小, 重量輕、高頻特性良好,輸出線性好等優(yōu)點,而被廣泛采用。但當被測壓力變化頻率低, 變化幅度小時,壓電晶體的電荷量變化難于反映到測量結(jié)果中,即壓電傳感器的低頻特 性差。而我們測量的油路中存在這種變化頻率低、幅度小的壓力高壓油管中的殘留 壓力。因此,壓電傳感器是測不出這種壓力的。上面提到的現(xiàn)象極可能是因為測不出殘 留壓力而產(chǎn)生的。 在課題立項時,還曾考慮過壓電傳感器靈敏度變化問題,還有高壓油管嘴端壓力與 針閥體內(nèi)壓力室的壓力差異問題,是否會對壓力測量精度產(chǎn)生一定的影響。這些都將在 下面的論文中予以闡述。 1.2 柴油發(fā)動機的燃料噴射裝置概述 燃油噴射裝置是柴油機的一個重要組成部分,在產(chǎn)品改進和新品試制過程中,為了 獲得良好的性能指標,往往需要對燃油噴射系統(tǒng)進行大量的調(diào)試工作,根據(jù)大量實踐表 明,對現(xiàn)代柴油機噴射裝置的要求是: (1) 能精確的控制每循環(huán)的噴射量(并要求每缸等量),并在規(guī)定的時間內(nèi)(噴射持續(xù)角)噴 入汽缸,換言之,即要求具有合適的噴油率。 (2) 為了優(yōu)化柴油機的性能、煙度、噪聲和排放,需要具備能隨柴油機負荷和轉(zhuǎn)速變 的、精度為1 A 的噴油提前角。 (3) 為了將柴油和空氣混合,需要高的噴射壓力,對具有強空氣渦流的直噴式或非直 噴式柴油機,最大噴射壓力為 3040MPA,對低渦流直噴式,最大噴射壓力約為 4548MPA,對無渦流直噴式,最大噴射壓力在 100MPA 以上。 近年來,得到蓬勃發(fā)展的電控噴射系統(tǒng),在實現(xiàn)要求(2)方面已比常規(guī)的機械液力 式噴射裝置顯示出更大的優(yōu)越性,并開辟了將噴油系統(tǒng)控制和運輸車輛控制結(jié)合起來的 可能性。 在柴油內(nèi)燃機出現(xiàn)早期,燃油噴射是通過高壓空氣實現(xiàn)的。一九二七年,德國博世 無錫太湖學院學士學位論文 2 (BOSH)公司開始專業(yè)生產(chǎn)以螺旋槽柱塞旋轉(zhuǎn)方式調(diào)整供油量的機械式噴油泵,這種噴 油泵的工作原理至今仍用于多數(shù)柴油內(nèi)燃機的燃料供給系統(tǒng)中。 圖 1.1 燃油系統(tǒng)圖 如圖 1.1 整個燃油系統(tǒng)由低壓油路(油箱、輸油泵、燃料濾請器、 ) (噴油泵、高壓油 管、噴油器)和調(diào)節(jié)系統(tǒng)組成。其核心部分是高壓油路所組成的噴油系統(tǒng),人們也把這 種傳統(tǒng)燃料供給系統(tǒng)稱之為泵-管-嘴系統(tǒng)。在這種系統(tǒng)中,噴油泵有柱塞式噴油泵和轉(zhuǎn)子 分配式噴油泵兩種。對柱塞式噴油泵,每個柱塞元件對應于一個氣缸,多缸內(nèi)燃機所用 的柱塞數(shù)和氣缸數(shù)相等且和為一體,構(gòu)成合成式噴油泵;對小型單缸和大型多缸內(nèi)燃機, 常采用每個柱塞元件獨立組成一個噴油泵,稱之為單體噴油泵。轉(zhuǎn)子分配式噴油泵是用 一個或一對柱塞產(chǎn)生高壓油向多缸內(nèi)燃機的氣缸內(nèi)噴油,這種主要用于小缸徑高速柴油 內(nèi)燃機上,其制造成本較低。 在上述泵-管-嘴燃料供給系統(tǒng)中,由于有高壓油管的存在,使噴油系統(tǒng)在內(nèi)燃機上的 布置比較方便靈活,加上已積累了長期制造與匹配的理論與經(jīng)驗,因此,目前這種系統(tǒng) 仍在各種柴油內(nèi)燃機上得到廣泛應用。但是,也正由于高壓油管的存在,降低了整個燃 油供給系統(tǒng)高壓部分的液力剛性,難于實現(xiàn)高壓噴射與理想的噴油規(guī)律,也使這種傳統(tǒng) 燃料供給系統(tǒng)的應用前景受到一定的限制。為了滿足柴油內(nèi)燃機不斷強化及日益嚴格的 排放與噪聲法規(guī)的要求,目前正在大力發(fā)展各種高壓、電控的燃料噴射系統(tǒng),如采用短 油管的單體泵系統(tǒng)、泵噴嘴與 PT 系統(tǒng)、蓄壓式或共軌系統(tǒng)等等。 在目前對于上述各種噴射裝置的研制中,對噴射裝置系統(tǒng)壓力性能有著很高的要求, 而油管的殘留壓力,在整個壓力系統(tǒng)中占有十分重要的地位,因此對殘留壓力裝置的研 究對整個燃油噴射裝置性能的提高有著十分重要的作用。 1.3 噴油過程 柴油內(nèi)燃機工作時,曲軸通過定時齒輪驅(qū)動噴油泵旋轉(zhuǎn),燃油從油箱經(jīng)濾清、輸油 汽車發(fā)動機油路測量設備的機構(gòu)設計 3 泵加壓(約 0。10。15MPA)到噴油泵的低壓油腔。當挺柱體總成的滾輪在凸輪基圓時, 柱塞腔與低壓油腔通過進、回油孔聯(lián)通,向柱塞腔供油,噴油泵凸輪軸運轉(zhuǎn),凸輪推動 挺柱體總成克服柱塞彈簧力向上運動。當柱塞頂面上升到與進、回油孔上邊緣平齊,進、 回油孔關閉,柱塞腔與低壓油腔隔離。當柱塞再向上運動時,柱塞腔內(nèi)的燃油被壓縮, 壓力升高。當壓力上升到大于出油閥開啟壓力與高壓油管內(nèi)殘壓之和時,出油閥開啟, 燃油流入出油閥緊帽進到高壓油管、噴油器體內(nèi)油路及針閥體盛油槽內(nèi)。柱塞繼續(xù)上升, 油壓升高,當噴油器針閥體盛油槽內(nèi)的油壓達到并超過針閥開啟壓力時,針閥打開,向 氣缸內(nèi)噴油。由于柱塞頂面積大,噴油器的噴孔面積小,故噴射過程中壓力繼續(xù)升高。 當柱塞上升到其斜槽上邊緣與回油孔的下邊緣相聯(lián)通時,柱塞再上升,柱塞腔與低壓油 腔相通,燃油流經(jīng)回油孔開啟截面進入低壓油腔,柱塞腔壓力下降。隨后出油閥在彈簧 力和兩端油壓的綜合作用下開始下行,當減壓凸緣進入出油閥座孔后,出油閥緊帽腔與 柱塞腔隔離,使緊帽腔到噴油器所組成的高壓油路內(nèi)保持一定量燃油,出油閥仍繼續(xù)下 行到落座。出油閥在落座過程中,由于減壓容積的作用,使高壓油路(出油閥緊帽腔、 高壓油管、噴油器體內(nèi)油道、盛油槽容積的總和)中燃油壓力迅速下降。當盛油槽內(nèi)的 燃油壓力小于針閥關閉壓力時,針閥落座,噴油停止。 由于燃油的可壓縮性與慣性,壓力的傳播與反射,高壓油管內(nèi)的燃油將產(chǎn)生一定的 壓力波,壓力波在出油閥緊帽腔到針閥體的盛油槽內(nèi)不斷衰減,趨于一定壓力定值即殘 留壓力。上述噴油過程是可用壓力傳感器及位移傳感器和相應儀器測出,考慮到測量的 方便性和可行性,通常噴油過程試驗僅測出泵端壓力、嘴端壓力、針閥升程和噴油速率 隨凸輪軸轉(zhuǎn)角變化關系。隨后,出油閥落座時,柱塞在凸輪驅(qū)動下繼續(xù)上行到最大行程 后,在柱塞彈簧力作用下,沿凸輪下降段下行,在下行過程中,噴油泵不產(chǎn)生泵油作用, 至此,完成了一個泵油循環(huán)。在柱塞上升過程中,柱塞從下止點上升到進、回油孔關閉 時所經(jīng)過的距離,稱之為噴油泵柱塞的預行程,它的大小決定了柱塞在壓油過程中初速 度的大小,將影響噴油速率;柱塞封閉進、回油孔開始壓油到柱塞斜槽上邊緣與回油孔 相通開始回油所經(jīng)歷的升程,稱之為噴油泵柱塞的有效行程,它的大小與循環(huán)供油量有 關,決定了噴油器循環(huán)噴油量的大小。 從上述噴油過程的概述可知,噴油試驗過程涉及了泵端壓力嘴端壓力。而為了真實 獲得這兩個壓力必須與油管的殘留壓力結(jié)合起來。因此油管的殘留壓力是整個噴油過程 的一個組成部分,對整個噴射過程有著十分重要的作用。 1.4 幾何供油規(guī)律和噴油規(guī)律的定義 幾何供油規(guī)律是指從幾何關系上求出的油泵凸輪每轉(zhuǎn)一度(或每妙)噴油泵供入高 壓系統(tǒng)的燃油量(mm3/()泵軸或 mm3/s)隨凸輪軸轉(zhuǎn)角 (或時間 t)的變化關系。 由于它純粹是幾何關系決定的,因此只要知道柱塞的運動特性即可。 噴油規(guī)律是指在噴油過程中,每秒或每度泵軸轉(zhuǎn)角從噴油器噴出的燃油量隨時間或 泵軸轉(zhuǎn)角的變化關系。 1.5 噴油器總成 噴油器總成對于柴油機來說,有著非常重要的作用。噴油器總成在發(fā)動機上的安裝 無錫太湖學院學士學位論文 4 及噴油器總成的噴射性能直接影響柴油發(fā)動機的動力性、經(jīng)濟性、使用性能及可靠性。 噴油器不僅決定著噴霧質(zhì)量、油束與燃燒室的配合,而且影響噴油特性(噴油時刻、噴 油延續(xù)時間、噴油規(guī)律) ,這些都直接影響發(fā)動機的性能指標。如果噴油不良,油束和燃 燒室配合不好,則混合氣形成惡化,燃燒變壞,性能下降。在新產(chǎn)品的試制過程中,往 往需要對噴油器作大量的調(diào)試,才能使柴油機達到設計指標;在使用過程中,常由于噴 油器的故障使發(fā)動機性能下降,甚至不能運轉(zhuǎn)。所以噴油器是影響柴油機設計指標和使 用性能的關鍵部件之一。 噴油器總成通過法蘭、壓板和螺套緊固在發(fā)動機的氣缸頭上,它的噴油嘴端深入到 發(fā)動機氣缸的燃燒室內(nèi)。噴油器的高壓油道通過高壓油管與噴油泵總成的出油閥接頭相 連接,回油油路相互連接直接回到油箱。 噴油器總成的功用是: (1) 將一定數(shù)量的具有合適噴射壓力的燃油霧化,以促進燃油在發(fā)動機氣缸內(nèi)的著火 燃燒。 (2) 借助于(或者不借助于)空氣渦流將燃油噴注并力求均勻分布到氣缸的燃燒室內(nèi), 特別對于無渦流的開式燃燒室,噴油器總成的安裝精度是一個很值得重視的問題。一般 噴油器總成由噴油嘴偶件、噴油器體、調(diào)壓裝置、油管接頭、緊帽等、部件組成。 當高壓燃油經(jīng)高壓油道進入噴油嘴偶件盛油槽部位而壓力積蓄到能克服調(diào)壓彈簧對 針閥的壓緊力時,針閥被升起,高壓油進入嘴端的高壓腔經(jīng)噴孔霧化而噴射到氣缸的燃 燒室內(nèi)。當噴油泵終止泵油,油道內(nèi)壓力降低,針閥受彈簧的壓力而降致針閥座面以關 閉高壓腔,這時燃油不能經(jīng)過噴油孔而進入發(fā)動機氣缸的燃燒室,而燃燒室的燃點也不 能進入噴油器體內(nèi)。由于噴油器總成的主要組成是噴油嘴偶件,而噴油嘴偶件又有不同 的結(jié)構(gòu)形式,所以噴油器總成也有不同的結(jié)構(gòu)形式。 小發(fā)動機的油嘴開啟壓力較低,而大發(fā)動機的油嘴開啟壓力和關閉壓力應足夠高, 以保證噴射終止后針閥能克服燃燒室高壓而落座,否則燃燒室氣體將進入油嘴,使噴孔 和針閥積碳而進一步影響燃油的噴射和燃燒。 噴油器中噴油壓力的影響: 在燃油噴射過程中,燃油壓力是變化的。一般講,小型高速柴油機的噴油嘴針閥開 啟壓力為 1220MPA ,最高燃油壓力是 4060MPA,而大型柴油機噴油嘴針閥開啟壓力 為 2130MPA ,最高噴油壓力約為 80100MPA 以上。噴油壓力直接影響噴油持續(xù)時間 和燃油霧化質(zhì)量。如果噴油壓力過低,則燃油霧化不好,而且容易引起燃氣回竄將噴油 嘴燒壞。隨著噴油壓力提高,可以使油束出口速度增加,降低油滴的平均直徑,使油滴 蒸發(fā)加快,加速油束在空氣中的擴散,使空氣卷入的相對速度增加,同時噴射持續(xù)期縮 短,這樣就大大提高了混合氣形成速率,從而改善燃燒性能。 噴油壓力對然油消耗率的影響: 隨著噴油壓力提高,燃油消耗率下降。所以近年來在柴油機上有提高噴油壓力的趨勢, 甚至采用高壓噴射。例如在大型柴油機上噴油壓力已提高到 100MPA 以上,MAN 公司的 58/64 系列柴油機的最高噴油壓力已達 130MPA,并打算提高到 140MPA,在小型高速柴油 機上,由于受到噴油泵強度的限制,最高噴油壓力通常在 70MPA 以下。應該指出,由于最 汽車發(fā)動機油路測量設備的機構(gòu)設計 5 高噴油壓力的出現(xiàn)是瞬時的,因此應用平均有效壓力(即在噴油持續(xù)期內(nèi)通過噴孔的平均 壓降)來判斷噴油過程的好壞更為合理。隨著平均有效壓力的提高,燃油消耗率和煙度都 相應下降。 無錫太湖學院學士學位論文 6 2 柴油發(fā)動機油路壓力測量設備的設計 2.1 柴油發(fā)動機油路壓力測量設備控制系統(tǒng)概述 信息總是蘊涵在某些物理量之中,并依靠它們來傳輸?shù)摹_@些物理量就是信號。就 具體物理性質(zhì)而言,信號有光電信號、光信號、力信號,等等。其中,電信號在變換、 處理、傳輸和運用等方面,都有明顯的優(yōu)點,因而成為目前應用最廣泛的信號。各種非 電信號也往往被轉(zhuǎn)換成電信號,而后傳輸、處理和運用。 在測試工作的許多場合中,并不考慮信號的具體性質(zhì),而是將其抽象為變量之間的 函數(shù)關系,特別是時間函數(shù)或空間函數(shù),從數(shù)學上加以分析研究,從中得出一些具有普 遍意義的理論。這些理論極大地發(fā)展了測試技術,并成為測試技術的重要組成部分。這 些理論就是信號的分析和處理技術如圖 1.2 圖 1.2 信號的分析和處理技術圖 一般說來,測試工作的全過程包含著許多環(huán)節(jié):以適當?shù)姆绞郊畋粶y對象、信號 的調(diào)理、分析與處理、顯示與記錄,以及必要時以電量形式輸出測量結(jié)果。因此,測試 系統(tǒng)的大致框圖可以用圖 2.1 來表示: 圖 2.1 測試系統(tǒng)流程框圖 應當指出,并非所有的測試系統(tǒng)都具備圖 2.1 中所有環(huán)節(jié),尤其是虛線連接的環(huán)節(jié)和 傳輸環(huán)節(jié)。實際上,對環(huán)節(jié)與環(huán)節(jié)之間都存在著傳輸。圖 2.1 中的傳輸環(huán)節(jié)是指較遠距離 的通訊傳輸??陀^事物是多樣的。測試工作所希望獲取的信息,有可能已載于某種可檢 測的信號中,也有可能尚未載于檢測的信號中。對于后者,測試工作就包含著選用合適 的方式激勵被測對象,使其產(chǎn)生既能充分表征其有關信息便于檢測的信號。事實上,許 多系統(tǒng)的特征參量在系統(tǒng)的某些狀態(tài)下,可能充分地顯示出來;而在另外一些狀態(tài)下確 汽車發(fā)動機油路測量設備的機構(gòu)設計 7 可能沒有顯示出來,或者顯示得很不明顯,以至于難于檢測出來。因此,在后一種情況 下,要測量這些特征參量時,就需要激勵該系統(tǒng),使其處于能夠充分顯示這些參量特性 的狀態(tài)中,以便有效地檢測載有這些信號的信號。傳感器直接作用于被測量。并能按一 定規(guī)律將被測量轉(zhuǎn)換成同種或別種量輸出。信號調(diào)理環(huán)節(jié)。把來自傳感器的信號轉(zhuǎn)換成 更適合于進一步傳輸和處理的形式。這時信號轉(zhuǎn)換,在多數(shù)情況下是電信號之間的轉(zhuǎn)換。 例如將幅值放大,將阻抗的變化轉(zhuǎn)換成電壓的變化或?qū)⒆杩沟淖兓D(zhuǎn)換成頻率的變 化等等。信號處理環(huán)節(jié)接受來自調(diào)理環(huán)節(jié)的信號,并進行各種計算、濾波分析將結(jié)果輸 至顯示記錄或控制系統(tǒng)。信號顯示、記錄環(huán)節(jié),以檢測者易于認識的形式來顯示測量的 結(jié)果,或?qū)y量結(jié)果存貯,供必要時使用。在所有這些環(huán)節(jié)中,必須遵循的基本原則是 各環(huán)節(jié)的輸出量與輸入量之間保持一一對應和盡量不失真的關系,并必須盡可能的減小 或消除各種干擾。 從以上的各測量環(huán)節(jié)的相互關系中我們可以知道,任何測量儀器都是由感受件、中 間件、效用件組成的。下面我們再對這三個元件作一下簡單的描述。 1.信號接收部件 它直接與被測對象發(fā)生聯(lián)系(但不一定直接接觸),感知被測參數(shù)的變化,同時對外界 發(fā)出相應的信號。 作為儀器的感受件必須滿足下述三個條件: (1) 它必須隨被測參數(shù)的變化而發(fā)生相應的內(nèi)部變化(這個內(nèi)部變化就是傳感器的 輸出信號) 。如熱電偶的一端受熱后,因金屬的熱電效應而產(chǎn)生熱電勢。 (2) 它只能隨被測參數(shù)的變化而發(fā)出信號(即不受其它任何參數(shù)的影響) 。如熱電 偶產(chǎn)生電勢的大小只隨溫度而變化,其它如壓力等參數(shù)的變化不引起電勢的改變。 (3) 感受件發(fā)出的信號與被測參數(shù)之間必須是單值的函數(shù)關系(即一個確定的信 號只能與參數(shù)的一個值相對應) 。例如,不能用水的密度變化來測量+4左右的溫度, 因為在這種情況下水的同一個密度大小可以代表兩個不同的溫度。 實際上,這三個條件是難以完全得到滿足的,特別是其中第(2)項條件。因此,任 何傳感器都不可能是十全十美的,它都受一定使用條件的限制。如在使用上不加以注意, 就會得出錯誤的測量結(jié)果。 2. 中間件 最簡單的中間件是“ 單純”起傳遞作用的元件,它將傳感器的輸出原封不動地傳遞給效 用件。這種單純的傳遞件一般只有當傳感器輸出的信號較強,感受件與效用件之間的距 離不大或效用件的靈敏度很高(或消耗的能量很?。r才有可能采用。 在近代的內(nèi)燃機測試工作中,都要求實現(xiàn)數(shù)據(jù)集中觀測、遙測和自動記錄。所以大 多數(shù)測量儀器的中間件還必須完成“放大” 、 “變換”和 “運算”任務。 儀器的放大件有兩類:一類是感受件發(fā)出的信號較強,放大時不需外加能量,它只 利用杠桿、齒輪等機械構(gòu)件擴大指針和標尺之間的相對位移,使之易于觀測,如機械式 示功器中的杠桿、彈簧管壓力計中的杠桿和扇形齒輪傳動機構(gòu)。 另一類放大是需要外加能量的,這在電測儀器中用得很多,例如用電子電位計測量 熱電勢時,就要將電勢放大十萬倍才能足以驅(qū)動伺服電機帶動指針作出指示。這類放大 無錫太湖學院學士學位論文 8 在電測儀器中利用電子器件來完成。 有時,為了放大信號的需要,或改變傳感器輸出信號性質(zhì)的需要,在電測儀器的測 量電路中設有信號“ 變換器 ”和“運算器”。 3. 效用件 它直接與觀測者發(fā)生聯(lián)系,其作用是根據(jù)傳感器輸出信號的大小向檢測者顯示被測 參數(shù)在數(shù)量上的大小。最簡單而常見的儀器效用件是指示件,它通過標尺和指針(或液 面、光線等)的相對位置來反映被測參數(shù)的瞬時值,有這種效用件的儀器也就被稱作指 示儀器。效用件能將被測參數(shù)變化歷程記錄下來的儀器稱為記錄式儀器。在記錄式儀器 中,除了以記錄筆的運動來反映被測參數(shù)的變化外,還需要另一個作相應運動的部件, 這樣才能作出函數(shù)的圖形。在現(xiàn)有的條件下此類部件已被打印機等顯示輸出設備所代替。 記錄式儀器所能反映的是被測參數(shù)在各個瞬時的變化情況,但有時需要知道被測參 數(shù)對時間的積分。例如,在測定流量時,不僅要知道流量的瞬時值,而且還要知道在某 個時間間隔內(nèi)流過的總流量,如以 Q 表示瞬時流量( m2/s) ,則 就是從時間 t1 到 t2 間21tQd 隔內(nèi)流過的總流量,但這畢竟比較麻煩,為此可以使儀器的效用件自己進行積分,這樣 的測量儀器稱積分式累計儀器,如流量計、電度表等。 此外,按照效用件的功能來分類的還有:數(shù)字式儀器、信號式儀器、電接觸式儀器、 調(diào)節(jié)式儀器,等等。 2.2 柴油發(fā)動機油路壓力測量設備的原理 為了精確地測定高壓油管中的殘留壓力,我們在查閱了大量資料的基礎上,并參照 噴油泵的結(jié)構(gòu)設計,設計了一種專門用于測量殘留壓力的測量裝置。柱塞二開有二百四 十度的環(huán)槽,并通過一隊圓錐直齒輪與油泵凸輪軸同步轉(zhuǎn)動,柱塞套上裝有壓力表和應 變式傳感器。當油泵與殘留壓力測量裝置連接的那一缸即將進入供油狀態(tài)時,柱塞的密 封面將測量油路與油泵高壓油路切斷。供油結(jié)束后,柱塞上的環(huán)槽使得測量油路與高壓 油管相同。這樣,壓力表和傳感器就采集到了供油結(jié)束時期高壓油管中的殘留壓力。可 以從壓力表的表盤上直接讀取壓力數(shù)值,也可以以此觀察壓力的變化趨勢。由傳感器采 集、信號轉(zhuǎn)換儀轉(zhuǎn)換和數(shù)據(jù)處理儀記錄下來的壓力波形,可以得到在一定工況下,一段 凸輪軸轉(zhuǎn)角范圍內(nèi)壓力波動的情況??梢娺@兩種記錄方式各有所長。 2.3 柴油發(fā)動機油路壓力測量設備相位調(diào)整 要測量與油泵某一缸連接的高壓油管的殘留壓力;需先轉(zhuǎn)動油泵凸輪軸,將該缸轉(zhuǎn) 到供油始點位置;再將殘留壓力測量裝置轉(zhuǎn)到附圖 1(b)所示的位置。然后,將油泵試 驗臺動力輸出端與殘留壓力測量裝置傳動軸的一端、殘留壓力測量裝置傳動軸的另一端 與油泵凸輪軸,用聯(lián)軸節(jié)連接起來。這樣,就把殘留壓力測量裝置的相位與油泵的相位 對應起來了。 汽車發(fā)動機油路測量設備的機構(gòu)設計 9 2.4 柴油發(fā)動機油路壓力測量設備測量線路 測量殘留壓力所作用的傳感器是應變式傳感器。導體受機械變形時,其電阻值發(fā)生 變化,稱為“ 應變效應” 。應變式傳感器就是用以上原理工作的。 對于大多數(shù)作為應變片金屬絲的材料來說,其電阻絲電阻變化率 在彈性范圍內(nèi)可R d 用下式表示: kldR 式中 k 為常數(shù),其值約在。1.63.6 之間; 為應變。l 此式表示金屬電阻絲電阻變化率 與應變 成線性關系,而應變靈敏系數(shù) k 即為此 直線的斜率,這就是電阻應變片測量應變的理論基礎。 半導體應變片最突出的優(yōu)點是靈敏系數(shù)高,根據(jù)不同的半導體材料,ks=30175,它 比常用的金屬絲電阻應變片的靈敏數(shù)系(一般 k=2)大幾十倍,于是在應變片的應用上提 供了很大方便。此外,如機械滯后小,橫向效應小以及它本身的體積小等優(yōu)點,擴大了 它的使用范圍。 但半導體應變片目前還存在如下缺點: (1)溫度穩(wěn)定性差。不僅因為半導體材料的電阻溫度系數(shù)大,而且它的靈敏系數(shù)隨 溫度的變化而有相當大的變化。 (2)在大應變作用下,靈敏系數(shù)的非線性較大,同時,由于半導體應變片的靈敏系 數(shù)高,在承受應變作用時引起的電阻變化就大,如靈敏系數(shù)高,在承受應變作用時引起 的電阻變化就大,如靈敏系數(shù)為 130 的半導體應變片,在承受 1000 的作用時,其電阻 變化率 R/R 可達 13%,在這種情況下,不僅應變片靈敏系數(shù)本身失去線性,而且應變儀 常用的等臂惠斯頓電橋也將達到 6%的非線性誤差,所以使用半導體應變片測量較大的應 變時,對測量儀器本身亦應采取措施,以配合半導體應變片的應用,如用高阻抗恒流電 源作電橋供電和采用具有高橋臂比的恒壓電橋等。 由于半導體應變片的溫度穩(wěn)定性差,使用時必須采取溫度補償措施,以消除由溫度 引起的零漂或虛假信號。 應變式傳感器的溫度補償是一個不可忽視的問題,因為應變片作為敏感元件測量構(gòu) 件的變形時,總是希望應變片的電阻變化與應變之間有單值函數(shù)關系,但實際上電阻的 變化受溫度變化的影響很大。 在實際工作中,為了減小甚至消除這種溫度變化的影響,常采用橋路補償和應變片 自補償?shù)姆椒▉磉M行溫度補償。 目前常用的應變式壓力傳感器有懸鏈膜片-應變筒式、平膜片式和管式等。它們的共 同特點是利用粘貼在彈性敏感元件上的應變片,感測其受壓后的局部應變,從而測得流 體的壓力。 油管殘留壓力測量裝置采用 的 BPR-2/100 型傳感器,就是懸鏈膜片-應變筒式應變式 壓力傳感器。當傳感器的膜片受到流體壓力作用時,圓筒受到壓縮,產(chǎn)生應變。在圓筒 薄壁部分的外表面上,沿軸向粘貼工作應變片,沿橫向粘貼溫度補償片,工作片和補償 Rd 無錫太湖學院學士學位論文 10 片接成半橋,通過相應的測量電路,即可得到與被測壓力成正比的電壓(或電流)輸出。 這種傳感器的承壓膜片以應變筒直徑分為內(nèi)、外兩部分,其徑向剖面呈懸鏈線形, 膜片的抗彎剛度很小。這樣,應變筒的軸向壓應變可由下式估算: 式中 P被測壓力( Pa) A應變筒的橫截面積(m 2) E應變筒材料的彈性模量(N/ m 2) A1承壓膜片的有效工作面積(m 2) 在外殼內(nèi)徑確定的情況下,應變筒外徑越大則承壓膜片的有效工作面積也越大,這 對提高傳感器的靈敏度有利。但應變筒外徑增大,應變筒與膜片的接觸面積就要增加, 從而使溫度影響增大。一般設計成小圓面積略小于大圓面積的三分之一,在這種情況下, 承壓膜片的有效面積略小于總面積的三分之二。 懸鏈膜片壓力傳感器的線性誤差較大。包括非線性、回程誤差和蠕變再內(nèi)的總線性 誤差一般為 1%,較好的情況下可達 0。5%左右。除了它有一般應變式傳感器中產(chǎn)生線性 誤差的因素之外,這種傳感器承壓膜片的有效工作面積隨壓力的增大而減小,以及在壓 力作用下膜片邊緣部位出現(xiàn)相當大的局部彎曲應力,都是產(chǎn)生非線性的重要原因。當應 力超過材料屈服限時,就會出現(xiàn)回程誤差、蠕變等問題。上述所有因素引起的線性誤差, 都是隨著膜片直徑的增大而減小。 這種壓力傳感器的靈敏度和固有頻率都要比相同直徑的平膜片式傳感器高的多,它 的固有頻率一般在 3050kHz 的范圍內(nèi)。 綜合上述內(nèi)容,可以得出這樣一個結(jié)論,就是傳感器受壓力作用,產(chǎn)生微應變。由 應變儀將微應變量的變化轉(zhuǎn)換為電壓的變化。將電壓信號送入數(shù)據(jù)處理儀。由模擬量/數(shù) 字量(A / D)轉(zhuǎn)換板轉(zhuǎn)換,就得到了壓力的數(shù)字量。 測量高壓油管泵端、嘴端壓力的傳感器是壓電式傳感器。 壓電傳感器的工作原理是以某些物質(zhì)的壓電效應為基礎的。 有些結(jié)晶物質(zhì)沿它的某個結(jié)晶軸受到力的作用時,其內(nèi)部有極化現(xiàn)象出現(xiàn),在它的 表面上有電荷集結(jié),其大小和作用力的大小成正比,這種效應稱為正壓電效應。反之, 如果在晶體的某些表面之間加上電場,在晶體內(nèi)部也產(chǎn)生極化現(xiàn)象,同時晶體產(chǎn)生變形, 這種現(xiàn)象稱為逆壓電效應。具有壓電效應的晶體稱為壓電晶體。作為壓電傳感器材料的 壓電晶體有:石英晶體、酒石酸鉀鈉、鈦酸鉛等鉛系多晶體燒結(jié)而成的陶瓷等。 在晶體切片的電軸方向?qū)ζ涫┘訅毫蚶r都會在垂直于該軸面上集結(jié)電荷,電 荷可從緊貼于兩晶體面上的金屬極板用引線傳出,作為壓電傳感器的輸出。 為了提高輸出,在壓電傳感器中,一般很少將壓電晶體單片使用,而往往采用兩片 以上組合在一起組成一個傳感器。由于壓電晶片是有極性的,所以有兩種組合方式,一 種是將晶片同極性的晶面緊貼在一起作一個輸出端,兩邊的電極用導線連接后作為輸出 的另一端,形成“ 并聯(lián)組合 ”。另一種組合是將正負電荷集中在上下極板,而中間晶面上的 汽車發(fā)動機油路測量設備的機構(gòu)設計 11 電荷則互相抵消,形成“ 串聯(lián)組合 ”。 從上述兩種組合方式中可以看出:并聯(lián)組合中輸出的電荷大,輸出電容大,輸出阻 抗低,時間常數(shù)大,故適于電荷作為輸出的場合。而在串聯(lián)組合中輸出電壓大,輸出電 容小,阻抗高以及時間常數(shù)小,故適于以電壓作為輸出信號和測量電路輸入阻抗很高的 場合。 從壓電效應來說,壓電傳感器產(chǎn)生的電荷量 Q 屬于靜電性質(zhì)的現(xiàn)象。此電荷量 Q 的 大小是無法用一般儀表測得的,這是因為一般儀表的輸入阻抗 有限,壓電晶片上產(chǎn)生的電荷將通過測量電路的輸入電阻泄漏掉。測量電路的輸入 阻抗愈高,被測參數(shù)的變化愈快(即頻率愈高) ,則所測的結(jié)果就愈接近電荷的實際變化。 由此可見,為了減小測量誤差,要求壓電傳感器測量電路必須是高輸入阻抗的放大器, 通常是在放大器與變換器之間加入高阻抗的前置放大器。 為了克服由于電纜長度影響傳感器的靈敏度,發(fā)揮利用壓電效應作為傳感器的優(yōu)點, 壓電傳感器應與電荷放大器匹配。它是一種以輸出電壓與輸入電荷成正比的前置放大器。 在采用電荷放大器的情況下,壓電傳感器視為一個電源。電荷放大器是一個高增益 的、具有反饋電容 Cf 的運算放大器。 開環(huán)增益為 A,C f 為反饋電容。此放大器是一個電壓并聯(lián)負反饋電路,從放大器輸 入端看,相當于 Cf(1+A )的反饋輸入阻抗和輸入端阻抗并聯(lián)。反饋電容 Cf 在輸入端的 作用增加了(1+A)倍,這就增大了輸入回路的時間常數(shù),當壓電傳感器受外力作用產(chǎn)生 電荷 Q 時,將向所有電容充電,此時放大器輸入端的電壓為為: eQ/Cpci1i Af 當 A 遠大于 1 時 /.if 放大器的輸入電壓 eO 為 0.=-/ife 式中的負號表示本極的輸出與輸入極性相反。此式還說明電荷放大器的輸出電壓僅 和電荷量及反饋電容量有關,對于放大系數(shù) A 及電纜分布 Cc 的變化不再影響放大器的輸 出,這是電荷放大器的顯著特點。一般對于長電纜時取 A Cf 大于 100C0 即可使電纜分布 電容對測量的靈敏度無明顯影響。但是 Cf 值選得過大也會影響靈敏度下降。此外,當電 荷放大器與壓電傳感器連接使用時,其下限頻率(時間常數(shù))只由電荷放大器決定,目 前國內(nèi)生產(chǎn)的電荷放大器的下限頻率已達 1.610-6Hz,這對實際測量和準靜態(tài)標定是很重 要的。 通過以上的分析,可以知道,本測量裝置所用的信號轉(zhuǎn)換儀是電荷放大器。電荷放 大器將傳感器傳輸來的電荷量信號轉(zhuǎn)換為電壓信號送入數(shù)據(jù)處理儀。 凸輪軸轉(zhuǎn)角信號是由霍爾元件始點信號傳感器產(chǎn)生的。 2.5 柴油發(fā)動機油路壓力測量設備試驗結(jié)果分析 利用高壓油管殘留壓力測量裝置和其它電測儀器,我們對日本 DDK 公司的 A 型泵進 無錫太湖學院學士學位論文 12 行了電測試驗。試驗項目有高壓油管泵端壓力,嘴端壓力和殘留壓力。通過試驗得到這 樣的結(jié)論:我們一般將泵端、嘴端壓力波形中的最低點(一般是供油前一段壓力) ,當作 壓力零點。事實上這一段壓力并不為零,而恰恰是殘留壓力的數(shù)值。供油開始前,殘留 壓力傳感器與嘴端壓力傳感器的采樣相同,兩個壓力相等,以這點為基準,泵端壓力波 形與殘留壓力波形迭加,嘴端壓力波形與殘留壓力波形迭加,才是泵端壓力、嘴端壓力 的實際波形。當油泵轉(zhuǎn)速為 300RPM,油嘴開啟壓力為 17.5MPA,而最高嘴端壓力只有 15.6MPA,低于油嘴開啟壓力。但把嘴端壓力波形與殘留壓力波形迭加之后,最高嘴端壓 力可接進 21MPA,就大大高于油嘴開啟壓力了。這樣就可以解釋在油嘴已噴油的工況下, 測出的油管嘴端壓力低于油嘴開啟壓力的現(xiàn)象了。 我們曾嘗試用所里現(xiàn)有的儀器來測殘留壓力。采用應變式傳感器與壓電式傳感器串 接在油管嘴端。從測量壓力的曲線來看,應變式傳感器以其所測壓力波形的最低點作為 其記錄零線。如果認為此點為實際零線,那么噴油前一段穩(wěn)定的壓力就應該為殘留壓力 了。從曲線上看這段壓力為 2.64MPA。但用殘留壓力測量裝置測同工況下的殘留壓力, 測得結(jié)果殘留壓力均在 7MPA 左右。因此用應變式傳感器裝在高壓油管端部,并不能測 得殘留壓力。 接殘壓裝置與不接殘壓裝置測得的同一轉(zhuǎn)速下的泵端、嘴端壓力波形,盡管兩次測 得的對應最大值不同,但嘴端與泵端的壓力差值基本相同,可見裝上殘壓裝置后并不影 響高壓油管的壓力。 目前,許多研究報告表明,高壓油管殘留壓力的研究對柴油機供油系統(tǒng)噴射過程的 研究有著重要的意義。如空泡和噴射過程的穩(wěn)定性等問題的研究中,只要殘留壓力不低 于燃油中輕餾份的飽和蒸汽壓力,就不會出現(xiàn)蒸汽空泡;而高壓油管中殘留壓力的穩(wěn)定 性就決定了噴射過程的穩(wěn)定。因此,殘留壓力的研究,不僅在科研機構(gòu)中得到重視,而 且越來越多的生產(chǎn)部門作為開發(fā)新品時參數(shù)選擇的依據(jù)。因此,我們開發(fā)的這個殘留壓 力測量裝置,不僅對提高油泵多參數(shù)測試精度有重要意義,也為噴油系統(tǒng)的研究和設計, 提供了新的測試手段。 2.6 柴油發(fā)動機油路壓力測量設備校驗壓電壓力傳感器 我們采用本所現(xiàn)有的儀器,比較了壓電式壓力傳感器與應變式壓力傳感器的壓力測 量值。目的是觀察壓電式壓力傳感器經(jīng)過這么多年的使用靈敏度是否有變化。 首先,用活塞式壓力計標定應變式壓力傳感器。再用電荷標定器(AVL3054-A01 CHARGE CALIBRATOR) ,根據(jù)所用的壓電傳感器的靈敏度數(shù)值,標定壓電式傳感器。 然后,將經(jīng)過標定的壓電式傳感器與應變式傳感器串接在高壓油管的嘴端,如附圖十七, 接線、安裝,進行試驗。附圖十八為測出的在油泵轉(zhuǎn)速為 800RPM,全油門工況下的嘴端 壓力曲線。壓電式傳感器測得的最高壓力;P PMAX=26.159MPA,應變式傳感器測得的最高 壓力 PSMAX=25。250MPA。 兩者的相對誤差為: 3.6%1025.0.256.1910%P-SMAX 汽車發(fā)動機油路測量設備的機構(gòu)設計 13 偏差并不大。再比較兩者波形,壓電式壓力傳感器的動態(tài)響應快,因此尖波較多, 但兩者的波形變化趨勢是相同的。 根據(jù)試驗結(jié)果,可以說,壓電式壓力傳感器的靈敏度變化不大。 2.7 柴油發(fā)動機油路壓力測量設備相關油管嘴端壓力與針閥體壓力室壓力 高壓油管嘴端壓力不同于針閥體壓力室的壓力(以下稱嘴腔壓力) 。由于壓力波在高 壓油路的傳播,嘴端壓力與嘴腔壓力存在相位差,兩者隨轉(zhuǎn)速,負荷變化的趨勢基本一 致,嘴腔壓力要高于嘴端壓力。 我們一般說的油嘴開啟壓力,是在油嘴試驗臺上手動加壓測出的。從其測量儀表與 油路的聯(lián)接方式來看,這個壓力是油管嘴端壓力,不是嘴腔壓力。因此,嘴端壓力與油 嘴開啟壓力是可以直接比較的。 無錫太湖學院學士學位論文 14 3 機械傳動選用及設計計算 考慮到油管殘留壓力試驗裝置的特殊性,采用了圓錐直齒輪一級傳動,并用花鍵聯(lián) 軸器與油泵試驗臺相連,專用聯(lián)軸節(jié)與測試油泵相連的方式進行布置。它有結(jié)構(gòu)簡單, 使用方便的特點。 齒輪機構(gòu)是機械中應用最廣的傳動機構(gòu)之一。與其他傳動機構(gòu)相比,其主要特點是: 傳動比穩(wěn)定,壽命較長,效率較高,適用的周速和功率范圍廣,并可實現(xiàn)任意兩軸間的 傳動;但要求較高的制造和安裝精度,成本較高,且高速運轉(zhuǎn)時噪聲較大。 錐齒輪用于兩相交軸間的傳動。一對錐齒輪的傳動相當于一對節(jié)圓錐作純滾動。錐 齒輪有分度圓錐,齒頂圓錐,齒根圓錐和基圓錐。按照分度圓錐上齒的方向,錐齒輪可 分為直齒、斜齒和曲齒三種。直齒錐齒輪的設計、制造和安裝都較簡單,應用較廣。曲 齒錐齒輪傳動平穩(wěn),承載能力高,常用于高速重載傳動,但設計、制造比較復雜。由于 本裝置是一級傳動,結(jié)構(gòu)相對較簡單所以采用直齒圓錐齒輪傳動。 3.1 圓錐齒輪的計算 圖 3-1 圓錐齒輪 1.軸的交角:= 1+2=90 根據(jù)實際工況及經(jīng)驗值定 Z1=Z2=44 m=1 2.分度圓錐角(節(jié)錐角) 1 01145ictg219045 3.模數(shù)(大端)m 由經(jīng)驗確定 m=1 4.分度圓直徑 d: 4mz 5.齒頂高 ha: *.ha 查表得: 1c02 *.1 汽車發(fā)動機油路測量設備的機構(gòu)設計 15 6齒根高 hf : *.hfacm 10.212 7全齒高 h: *. 所以: . 8齒頂圓直徑 da : *2cos2cosdahmZha 所以: 144545.1 9齒根圓直徑 df: df2hf*cos 41.42.30 10錐距(節(jié)錐長) 21 2120.5431.2sinmRZmzd 11齒頂角 a 正常收縮齒 tga=hR tg13.aarct1.84 12齒根角 tff tgf0.386.21mn PcT.d3362059 arc= 13齒頂錐角 a 正常收縮齒 41.86.4a 14齒根錐角 f 452.9ff 15齒寬 b 31.071R 根據(jù)實際工況取 6 16齒頂高投影 n 2hasini45 17齒寬的投影 e .cob 6cos4.8.1063e 無錫太湖學院學士學位論文 16 18從錐頂?shù)酱蠖送鈭A的距離 A 1.42A12n1.93mz 根據(jù)結(jié)構(gòu)要求取 21 19從支承端面到大端外圓的距離 M 根據(jù)結(jié)構(gòu)定為 10 20齒輪厚度 H: e104 21周節(jié) p: 3. 3.2 主傳動軸的相關概算 根據(jù)實際工作條件:確定傳動軸的材料為之 45 鋼,傳遞功率為 5KW,軸的轉(zhuǎn)速為 1200RPM。 由于該傳動軸主要受的是扭矩,所以扭轉(zhuǎn)強度條件初步估算軸徑: 最小軸徑計算公式 d: 查表得 45 鋼相應得 C 值應為 118107 綜合已知條件代入上式得 3pdcn d180717.28.953: 考慮到軸上將布置鍵槽所以需將軸徑增大 3% 最小軸徑應為 17。7419。56 扭矩計算: 669.510.5T3971.62PNmn 若將扭矩按脈動性質(zhì)考慮,取脈動系數(shù) =0。6 則37.6.3874.9.N 汽車發(fā)動機油路測量設備的機構(gòu)設計 17 3. 3 花鍵聯(lián)軸器的計算 圖 3-2 花健聯(lián)軸器 根據(jù)實際工況選定花鍵聯(lián)軸器的齒數(shù) Z=86 m=0。 5 標準壓力角為 30,選用 30的圓齒根 1分度圓直徑: Dmz0.58643 2基圓直徑: cosbD D 查表得 D=30 .7.2 3齒距 P: P3.1405 4花鍵作用齒厚上偏差查 GB/T3478。1 表 23、圖 3 得 esv0.25 5花鍵大徑基本尺寸 Dee: emz .87. 6外花鍵大徑上偏差查 GB/T3478。1 為-0.043 7外花鍵大徑公差查 GB/T3478。1 表 25 為 0.1 Tx10EsISTx0.43.10.43 花鍵的下偏差為-0。143 8外花鍵漸開線起始圓直徑最大值 22max .5tan(0.5)si.siDDevhSDTeb .346.905Sin05Sin301.75Dhs. ev=2 無錫太湖學院學士學位論文 18 tant30.574D.5216esv .30.50.32165thS 9綜合以上結(jié)果代入上式得 DTemax42.9 花鍵小徑基本尺寸: 1030圓齒根 Die: ieZ1.80561.842. 11外花鍵小徑公差取 Tx=0.01 同大徑:EI=-0.143 基本齒厚 S: 0.5.7 12作用齒厚最大值: vaxSesv.0.7 13實際齒厚最小值:Smin= Svmax-(T+) T+ 查 GB/T3478。1 T+=82 Smin= Svmax-(T+)=0。76-0。082=0 。678 14實際齒厚最大值 Smax Smax= Svmax- 查 GB/T3478。1 續(xù)表 8 =0.037 Smax= Svmax=0.760.037=0.723 15實際作用齒厚最小值 Svmin Svmin=Smin+ Svmin=Smin+=0.678+0.037=0。715 16齒形裕度 CF=0.1m=0.10。5=0.05 17齒根圓最小曲率半徑 Remin Remin=0.4m=0.2 18查 GB/T3478.1 得齒距累積公差 FP=0.054 齒形公差 ff=0.029 齒向公差 F=0.017 3.4 壓力波動的分析 在高速柴油機中,燃油噴射的持續(xù)時間很短,只有 15 度35 度曲軸轉(zhuǎn)角。在這樣短 的時間內(nèi),噴油泵柱塞變速供油,高壓管路中燃油壓力變化卻很大,在噴油時的最高壓 力可以高達 30100MPA,而不噴射時(即在相鄰兩次噴油過程之間) ,高壓管路中的殘 留壓力又很低。 根據(jù)分析故可選用設計圖紙中出油接頭規(guī)格尺寸 3.5 燃油的可壓縮性 當壓力變化不大時,可以認為液體是不可壓縮的,但在柴油機的燃油系統(tǒng)中,由于 壓力變化幅度大,燃油的可壓縮性就必須加以考慮。當壓力變化 25MPA 時,柴油體積約 縮小 1%,體積變化的數(shù)值不大,但由于每循環(huán)的供油量本身就很?。ㄈ?6135G 柴油機全 負荷時為 0。13ml/循環(huán)) ,而高壓管路中積聚的燃油比每循環(huán)供油量要多得多,這部分燃 汽車發(fā)動機油路測量設備的機構(gòu)設計 19 油被壓縮,噴油器中的壓力升高就要延遲,就會對噴油過程產(chǎn)生較大的影響。燃油的可 壓縮性 壓力變化愈大或容積愈大,則體積變化也愈大。當壓力變化在(23)10 7Pa 時, =( 4 5)10 -10m2/N 壓縮系數(shù) 的倒數(shù)稱為燃油的彈性系數(shù) E,其表達式為: (N / m 2)92.510: 3.6 管路的容積變化 高壓油管一般是用厚壁無縫鋼管制成,鋼管是有彈性的,在高壓作用下管子會脹大。 當油管中壓力變化為P 時,管子內(nèi)徑改變量為: prREr2 式中 r高壓油管的內(nèi)半徑 R高壓油管的外半徑 u泊桑系數(shù),鋼 u=0.3 E彈性模數(shù),鋼 E=2.21011 N / m2 由上式可知,壓力變化愈大,管子內(nèi)徑愈大,管子愈長,則容積變化也愈大。 根據(jù)上式理論數(shù)據(jù),殼體尺寸設計便知。 3.7 管路中的壓力波動 燃油的可壓縮性和管路的彈性,使高壓系統(tǒng)形成一個彈性系統(tǒng),燃油在高壓系統(tǒng)中 的流動也就產(chǎn)生彈性振動。在供油過程中,出油閥開啟之前,柱塞運動僅使泵油室中燃 油壓力升高;出油閥開啟的瞬間,在高壓油管靠近噴油泵一端的燃油受到自泵油室來的 燃油壓力沖擊,其附近區(qū)域產(chǎn)生局部的壓力升高,出油閥開啟后,柱塞運動將燃油擠向 高壓油管。但由于燃油的慣性和可壓縮性,柱塞所排擠的燃油量與高壓油管中流動的燃 油量之間不平衡,造成燃油瞬時堆積,使壓力繼續(xù)升高。這種局部壓力的瞬時提高,都 以壓力波的形式沿高壓油管向噴油器一端傳播。 傳播的速度就是聲速在這種介質(zhì)中的傳 播速度,其值約為 14001600m/s。這種傳播速度應該在純油狀態(tài)下;但在實際情況下其 值應為 7001200m/s,聲速在傳播中是變化的。 、 壓力波的傳播情況可作以下說明。當出油閥開啟時,高壓油管中靠近噴油泵一端的 燃油產(chǎn)生的壓力波向噴油器一端傳播。經(jīng)過 L/a( L高壓油管長度,a聲速)到達噴油 器端。如果第一個壓力波不足以升起針閥,則壓力波全部被反射,向噴油泵端傳播,反 射波經(jīng)過 L/a 到達噴油泵端與該處新產(chǎn)生的壓力波疊加起來,又被反射向噴油器一端傳播。 當壓力傳播使噴油器端的燃油壓力升高到大于針閥開啟壓力時,針閥即打開,噴油開始, 此時,傳至噴油器端的壓力波仍要部分地反射回去。所以,在整個供油過程期間,壓力 波往復傳播多次反射,高壓油管中的壓力也就隨時間和地點而變。在針閥關閉后,油管 中的壓力仍會往返波動,如果這個波動大,有可能使針閥再度開啟,造成不正常噴油, 無錫太湖學院學士學位論文 20 引起燃燒惡化,如果波動不大,由于管壁摩擦阻力和燃料粘性阻尼(內(nèi)摩擦)的作用, 壓力波較快衰減,以至在下次供油之前,油管中的壓力可以達到穩(wěn)定狀態(tài),此時殘留壓 力為 pr。 由于上述的壓力波動現(xiàn)象存在,使實際噴油過程與柱塞的供油過程很不一致。這也 是對油管的殘留壓力進行研究的重要原因之一。 3.8 噴油泵的參數(shù)選擇及其對柴油機性能的影響 提高噴油壓力的措施很多,如增大柱塞直徑;采用較陡的油泵凸輪廓線,提高柱塞 供油速度;減少高壓系統(tǒng)的阻力,以減少高壓燃料的能量損失;減小噴孔直徑等。采用 高壓噴射后,由于燃燒過程加快,使未燃的碳氫化合物 HC 的排放明顯減少。燃燒過程加 快,就可能采取推遲噴油的措施來降低有害排放物,而又不使燃油經(jīng)濟惡化。但高壓噴 射也帶來其它問題,如二次噴射、穴蝕,油泵凸輪疲勞剝落等,需要采取相應措施加以 解決。以上問題將在下面予以說明。 噴油泵柱塞和噴油泵凸輪,共同決定著每循環(huán)供油量及幾何供油規(guī)律,它們對柴油 機性能的影響主要反映在供油時刻和供油持續(xù)時間(即供油速度)對性能的影響上。供 油時刻可由供油提前角予以調(diào)整,而供油持續(xù)時間則和柱塞直徑、凸輪外形等因素有關。 由于本課題主要是對油管的殘留壓力進行研究,所以僅對上述幾個和油管的殘留壓力有 關的特性參數(shù)作簡要描述。 直接影響燃燒性能的是噴油提前角,因為測量噴油提前角必須有一套電氣設備來測 量噴油器針閥開啟時刻,這是動態(tài)測量,比較麻煩,所以平時柴油機測試,就是測量供 油提前角,產(chǎn)品說明書