高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題1 突破點3 平面向量用書 理-人教高三數(shù)學(xué)試題

上傳人:文*** 文檔編號:240690598 上傳時間:2024-04-30 格式:DOC 頁數(shù):7 大小:224KB
收藏 版權(quán)申訴 舉報 下載
高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題1 突破點3 平面向量用書 理-人教高三數(shù)學(xué)試題_第1頁
第1頁 / 共7頁
高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題1 突破點3 平面向量用書 理-人教高三數(shù)學(xué)試題_第2頁
第2頁 / 共7頁
高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題1 突破點3 平面向量用書 理-人教高三數(shù)學(xué)試題_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題1 突破點3 平面向量用書 理-人教高三數(shù)學(xué)試題》由會員分享,可在線閱讀,更多相關(guān)《高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題1 突破點3 平面向量用書 理-人教高三數(shù)學(xué)試題(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、突破點3 平面向量 提煉1 平面向量共線、垂直的兩個充要條件 若a=(x1,y1),b=(x2,y2),則: (1)a∥b?a=λb(b≠0)?x1y2-x2y1=0. (2)a⊥b?a·b=0?x1x2+y1y2=0. 提煉2 數(shù)量積常見的三種應(yīng)用 已知兩個非零向量a=(x1,y1),b=(x2,y2),則 (1)證明向量垂直:a⊥b?a·b=0?x1x2+y1y2=0. (2)求向量的長度:|a|==. (3)求向量的夾角:cos〈a,b〉==. 提煉3 平面向量解題中應(yīng)熟知的常用結(jié)論 (1)A,B,C三點共線的充要條件是存在實數(shù)λ,μ,有=λ+μ,且λ

2、+μ=1. (2)C是線段AB中點的充要條件是=(+). (3)G是△ABC的重心的充要條件為++=0,若△ABC的三個頂點坐標(biāo)分別為A(x1,y1),B(x2,y2),C(x3,y3),則△ABC的重心坐標(biāo)為,. (4)·=·=·?P為△ABC的垂心. (5)非零向量a,b垂直的充要條件:a⊥b?a·b=0?|a+b|=|a-b|?x1x2+y1y2=0. (6)向量b在a的方向上的投影為|b|cos θ=, 向量a在b的方向上的投影為|a|cos θ=. 回訪1 平面向量的線性運算 1.(2015·全國卷Ⅰ)設(shè)D為△ABC所在平面內(nèi)一點,=3,則(  ) A.=-+

3、B.=- C.=+ D.=- A ∵=3,∴-=3(-), 即4-=3 ,∴=-+.] 2.(2015·全國卷Ⅱ)設(shè)向量a,b不平行,向量λa+b與a+2b平行,則實數(shù)λ=________.  ∵λa+b與a+2b平行,∴λa+b=t(a+2b), 即λa+b=ta+2tb,∴解得] 回訪2 平面向量的數(shù)量積 3.(2016·全國乙卷)設(shè)向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,則m=________. -2 ∵|a+b|2=|a|2+|b|2+2a·b=|a|2+|b|2, ∴a·b=0. 又a=(m,1),b=(1,2),∴m+2=0,∴

4、m=-2.] 4.(2014·全國卷Ⅰ)已知A,B,C為圓O上的三點,若=(+),則與的夾角為________. 90° ∵=(+), ∴點O是△ABC中邊BC的中點, ∴BC為直徑,根據(jù)圓的幾何性質(zhì)有〈,〉=90°.] 5.(2012·全國卷)已知向量a,b夾角為45°,且|a|=1,|2a-b|=,則|b|=________. 3 ∵a,b的夾角為45°,|a|=1, ∴a·b=|a|·|b|cos 45°=|b|, |2a-b|2=4-4×|b|+|b|2=10, ∴|b|=3.] 回訪3 數(shù)量積的綜合應(yīng)用 6.(2013·全國卷Ⅰ)已知兩個單位向量a,b的夾角為6

5、0°,c=ta+(1-t)b,若b·c=0,則t=________. 2 |a|=|b|=1,〈a,b〉=60°. ∵c=ta+(1-t)b,∴b·c=ta·b+(1-t)b2=t×1×1×+(1-t)×1=+1-t=1-. ∵b·c=0,∴1-=0,∴t=2.] 熱點題型1 平面向量的運算 題型分析:該熱點是高考的必考點之一,考查方式主要體現(xiàn)在以下兩個方面:一是以平面圖形為載體考查向量的線性運算;二是以向量的共線與垂直為切入點,考查向量的夾角、模等.  (1)(2016·深圳二模)如圖3-1,正方形ABCD中,M是BC的中點,若=λ+μ,則λ+μ=(  ) 圖3-1

6、A.        B. C. D.2 (2)(2016·天津高考)已知△ABC是邊長為1的等邊三角形,點D,E分別是邊AB,BC的中點,連接DE并延長到點F,使得DE=2EF,則·的值為(  ) A.- B. C. D. (1)B (2)B (1)法一:建立平面直角坐標(biāo)系如圖所示,設(shè)正方形的邊長為2,則A(0,0),B(2,0),C(2,2),M(2,1),D(0,2),所以=(2,2),=(2,1),=(-2,2).由=λ+μ,得(2,2)=λ(2,1)+μ(-2,2),即(2,2)=(2λ-2μ,λ+2μ),所以解得 所以λ+μ=,故選B. 法二:因為=λ+μ=λ

7、(+)+μ(+)=λ+μ(-+)=(λ-μ)+,所以得所以λ+μ=,故選B. (2)如圖所示,=+. 又D,E分別為AB,BC的中點, 且DE=2EF,所以=,=+=, 所以=+. 又=-, 則·=·(-) =·-2+2-· =2-2-·. 又||=||=1,∠BAC=60°, 故·=--×1×1×=.故選B.] 1.平面向量的線性運算要抓住兩條主線:一是基于“形”,通過作出向量,結(jié)合圖形分析;二是基于“數(shù)”,借助坐標(biāo)運算來實現(xiàn). 2.正確理解并掌握向量的概念及運算,強化“坐標(biāo)化”的解題意識,注重數(shù)形結(jié)合思想、方程思想與轉(zhuǎn)化思想的應(yīng)用. 提醒:運算兩平面向量的

8、數(shù)量積時,務(wù)必要注意兩向量的方向. 變式訓(xùn)練1] (1)已知向量a=(-1,2),b=(3,1),c=(x,4),若(a-b)⊥c,則c·(a+b)=(  ) A.(2,12)        B.(-2,12) C.14 D.10 (2)已知e1,e2是不共線向量,a=me1+2e2,b=ne1-e2,且mn≠0.若a∥b,則=__________. 【導(dǎo)學(xué)號:85952017】 (1)C (2)-2 (1)易知a-b=(-4,1),由(a-b)⊥c,可得(-4)×x+1×4=0,即-4x+4=0,解得x=1,∴c=(1,4). 而a+b=(2,3),∴c·(a+b)=1

9、×2+4×3=14.故選C. (2)∵a∥b,∴a=λb,即me1+2e2=λ(ne1-e2),則解得=-2.] 熱點題型2 三角與向量的綜合問題 題型分析:平面向量作為解決問題的工具,具有代數(shù)形式和幾何形式的“雙重型”,高考常在平面向量與三角函數(shù)的交匯處命題,通過向量運算作為題目條件.  (名師押題)已知向量a=,b=(cos x,-1). (1)當(dāng)a∥b時,求cos2x-sin 2x的值; (2)設(shè)函數(shù)f(x)=2(a+b)·b,已知在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.若a=,b=2,sin B=,求y=f(x)+4cos 的取值范圍. 解] (1)∵a∥b,

10、∴cos x+sin x=0,2分 ∴tan x=-,4分 ∴cos2x-sin 2x===.6分 (2)f(x)=2(a+b)·b=sin +,8分 由正弦定理得=, 可得sin A=.9分 ∵b>a, ∴A=,10分 y=f(x)+4cos=sin-.11分 ∵x∈, ∴2x+∈, ∴-1≤y≤-, 即y的取值范圍是.12分 平面向量與三角函數(shù)問題的綜合主要利用向量數(shù)量積運算的坐標(biāo)形式,多與同角三角函數(shù)關(guān)系、誘導(dǎo)公式以及和角與倍角等公式求值等問題相結(jié)合,計算的準(zhǔn)確性和三角變換的靈活性是解決此類問題的關(guān)鍵點. 變式訓(xùn)練2] 在平面直角坐標(biāo)系xOy中,已知向量m=,n=(sin x,cos x),x∈. (1)若m⊥n,求tan x的值; (2)若m與n的夾角為,求x的值. 解] (1)若m⊥n,則m·n=0. 由向量數(shù)量積的坐標(biāo)公式得sin x-cos x=0,4分 ∴tan x=1.6分 (2)∵m與n的夾角為,∴m·n=|m|·|n|cos ,即sin x-cos x=,8分 ∴sin =.10分 又∵x∈,∴x-∈, ∴x-=,即x=.12分

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!