《高考數(shù)學(xué)二輪復(fù)習(xí) 專題檢測(二十三)“函數(shù)與導(dǎo)數(shù)”壓軸大題的搶分策略 理(普通生含解析)-人教版高三數(shù)學(xué)試題》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪復(fù)習(xí) 專題檢測(二十三)“函數(shù)與導(dǎo)數(shù)”壓軸大題的搶分策略 理(普通生含解析)-人教版高三數(shù)學(xué)試題(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、專題檢測(二十三) “函數(shù)與導(dǎo)數(shù)”壓軸大題的搶分策略
1.(2018·武漢調(diào)研)已知函數(shù)f(x)=ln x+(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a>0時(shí),證明:f(x)≥.
解:(1)f′(x)=-=(x>0).
當(dāng)a≤0時(shí),f′(x)>0,f(x)在(0,+∞)上單調(diào)遞增.
當(dāng)a>0時(shí),若x>a,則f′(x)>0,函數(shù)f(x)在(a,+∞)上單調(diào)遞增;
若00時(shí),f(x)min=f(a)=ln a+1.
要證f(x)≥,只需證ln a+1≥,
即證ln a
2、+-1≥0.
令函數(shù)g(a)=ln a+-1,
則g′(a)=-=(a>0),
當(dāng)01時(shí),g′(a)>0,
所以g(a)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
所以g(a)min=g(1)=0.
所以ln a+-1≥0恒成立,
所以f(x)≥.
2.(2018·全國卷Ⅱ)已知函數(shù)f(x)=ex-ax2.
(1)若a=1,證明:當(dāng)x≥0時(shí),f(x)≥1;
(2)若f(x)在(0,+∞)只有一個(gè)零點(diǎn),求a.
解:(1)證明:當(dāng)a=1時(shí),f(x)≥1等價(jià)于(x2+1)e-x-1≤0.
設(shè)函數(shù)g(x)=(x2+1)e-x-1,
則
3、g′(x)=-(x2-2x+1)e-x=-(x-1)2e-x.
當(dāng)x≠1時(shí),g′(x)<0,
所以g(x)在(0,+∞)上單調(diào)遞減.
而g(0)=0,故當(dāng)x≥0時(shí),g(x)≤0,即f(x)≥1.
(2)設(shè)函數(shù)h(x)=1-ax2e-x.
f(x)在(0,+∞)上只有一個(gè)零點(diǎn)等價(jià)于h(x)在(0,+∞)上只有一個(gè)零點(diǎn).
(ⅰ)當(dāng)a≤0時(shí),h(x)>0,h(x)沒有零點(diǎn);
(ⅱ)當(dāng)a>0時(shí),h′(x)=ax(x-2)e-x.
當(dāng)x∈(0,2)時(shí),h′(x)<0;
當(dāng)x∈(2,+∞)時(shí),h′(x)>0.
所以h(x)在(0,2)上單調(diào)遞減,
在(2,+∞)上單調(diào)遞增.
故h(
4、2)=1-是h(x)在(0,+∞)上的最小值.
①當(dāng)h(2)>0,即a<時(shí),h(x)在(0,+∞)上沒有零點(diǎn).
②當(dāng)h(2)=0,即a=時(shí),h(x)在(0,+∞)上只有一個(gè)零點(diǎn).
③當(dāng)h(2)<0,即a>時(shí),因?yàn)閔(0)=1,所以h(x)在(0,2)上有一個(gè)零點(diǎn).
由(1)知,當(dāng)x>0時(shí),ex>x2,所以h(4a)=1-=1->1-=1->0,
故h(x)在(2,4a)上有一個(gè)零點(diǎn).因此h(x)在(0,+∞)上有兩個(gè)零點(diǎn).
綜上,當(dāng)f(x)在(0,+∞)上只有一個(gè)零點(diǎn)時(shí),a=.
3.(2018·西安質(zhì)檢)設(shè)函數(shù)f(x)=ln x+(k∈R).
(1)若曲線y=f(x)在點(diǎn)(e,
5、f(e))處的切線與直線x-2=0垂直,求f(x)的單調(diào)性和極小值(其中e為自然對數(shù)的底數(shù));
(2)若對任意的x1>x2>0,f(x1)-f(x2)0),
∵曲線y=f(x)在點(diǎn)(e,f(e))處的切線與直線x-2=0垂直,
∴f′(e)=0,即-=0,得k=e,
∴f′(x)=-=(x>0).
由f′(x)<0,得00,得x>e,
∴f(x)在(0,e)上單調(diào)遞減,在(e,+∞)上單調(diào)遞增,
當(dāng)x=e時(shí),f(x)取得極小值,且f(e)=ln e+=2.
∴f(x)的極小值為
6、2.
(2)由題意知對任意的x1>x2>0,f(x1)-x10),
則h(x)在(0,+∞)上單調(diào)遞減,
∴h′(x)=--1≤0在(0,+∞)上恒成立,
即當(dāng)x>0時(shí),k≥-x2+x=-2+恒成立,
∴k≥.
故k的取值范圍是.
4.(2018·全國卷Ⅲ)已知函數(shù)f(x)=(2+x+ax2)·ln(1+x)-2x.
(1)若a=0,證明:當(dāng)-10時(shí),f(x)>0;
(2)若x=0是f(x)的極大值點(diǎn),求a.
解:(1)證明:當(dāng)a=0時(shí),f(x)=(2+x)ln(1+
7、x)-2x,f′(x)=ln(1+x)-.
設(shè)函數(shù)g(x)=ln(1+x)-,
則g′(x)=.
當(dāng)-10時(shí),g′(x)>0,
故當(dāng)x>-1時(shí),g(x)≥g(0)=0,
且僅當(dāng)x=0時(shí),g(x)=0,
從而f′(x)≥0,且僅當(dāng)x=0時(shí),f′(x)=0.
所以f(x)在(-1,+∞)上單調(diào)遞增.
又f(0)=0,
故當(dāng)-10時(shí),f(x)>0.
(2)①若a≥0,由(1)知,
當(dāng)x>0時(shí),f(x)≥(2+x)ln(1+x)-2x>0=f(0),
這與x=0是f(x)的極大值點(diǎn)矛盾.
②若a<0,
設(shè)函數(shù)
8、h(x)==ln(1+x)-.
由于當(dāng)|x|0,
故h(x)與f(x)符號相同.
又h(0)=f(0)=0,
故x=0是f(x)的極大值點(diǎn),
當(dāng)且僅當(dāng)x=0是h(x)的極大值點(diǎn).
h′(x)=-
=.
若6a+1>0,則當(dāng)00,
故x=0不是h(x)的極大值點(diǎn).
若6a+1<0,則a2x2+4ax+6a+1=0存在根x1<0,
故當(dāng)x∈(x1,0),且|x|0;
當(dāng)x∈(0,1)時(shí),h′(x)<0.
所以x=0是 h(x)的極大值點(diǎn),
從而x=0是 f(x)的極大值點(diǎn).
綜上,a=-