江蘇省徐州市高考考前模擬 數(shù)學(xué)試題及答案
《江蘇省徐州市高考考前模擬 數(shù)學(xué)試題及答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《江蘇省徐州市高考考前模擬 數(shù)學(xué)試題及答案(21頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 江蘇省徐州市2016屆高考前模擬 數(shù) 學(xué) 試 題 一、 填空題:本題共14小題,每小題5分,共70分.請(qǐng)把答案填寫在答題紙相應(yīng)位置上. 1. 已知全集,集合,則 ▲ . 2. 在復(fù)平面內(nèi),復(fù)數(shù) (為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為 ▲ . 3. 某校高一、高二、高三分別有學(xué)生1600名、1200名、800名,為了解該校高中學(xué)生的牙齒健康狀況,按各年級(jí)的學(xué)生數(shù)進(jìn)行分層抽樣,若高三抽取20名學(xué)生,則高一、高二共抽取的學(xué)生數(shù)為 ▲ . 4. 有個(gè)興趣小組,甲、乙兩位同學(xué)各參加其中一個(gè)小組,且他們參加各個(gè)興趣小組是等可能的,則甲、乙兩位同學(xué)參加同一個(gè)興趣小組的概
2、率為 ▲ . 5. 執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是 ▲ . 6. 已知等比數(shù)列滿足,,則該數(shù)列的前5項(xiàng)的和為 ▲ . 7. 過(guò)雙曲線的左焦點(diǎn)作垂直于實(shí)軸的弦,為右頂點(diǎn),若,則該雙曲線的離心率為 ▲ . 8.若指數(shù)函數(shù)的圖象過(guò)點(diǎn),則不等式的解集為 ▲ . 9. 如圖,在正方體中,,為的中點(diǎn),則三棱錐的體積為 ▲ cm3. 10. 已知點(diǎn),,圓:上存在點(diǎn),使,則圓心橫坐標(biāo)的取值范圍為 ▲ . 11.設(shè)過(guò)曲線上任意一點(diǎn)處的切線為,總有過(guò)曲線上一點(diǎn)處的切線,使得,則實(shí)數(shù)的取值范圍為 ▲ . 12.已知為數(shù)列的前項(xiàng)和
3、,,,若關(guān)于正整數(shù)的不等式的解集中的整數(shù)解有兩個(gè),則正實(shí)數(shù)的取值范圍為 ▲ . 13. 已知△中,M為線段BC上一點(diǎn),,,,則 △的面積最大值為 ▲ . 14. 對(duì)任意的實(shí)數(shù),當(dāng),恒有成立,則實(shí)數(shù)的最小值 為 ▲ . 二、解答題:本大題共6小題,共計(jì)90分,請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟. 15.(本小題滿分14分) 在Δ中,角,,所對(duì)的邊分別為,,,已知. (1)求證:,,成等差數(shù)列; (2)若,,求Δ的面積. 16.(本小題滿分14分) (第16題圖) 如圖,在直三棱柱
4、中,,.點(diǎn)是上一點(diǎn),且平面平面 (1)求證:; (2)求證:平面. 17.(本小題滿分14分) 如圖,有一塊等腰直角三角形的草坪,其中,根據(jù)實(shí)際需要,要擴(kuò)大此草坪的規(guī)模,在線段上選取一點(diǎn),使為平行四邊形. 為方便游客參觀,現(xiàn)將鋪設(shè)三條觀光道路.設(shè). (1)用表示出道路的長(zhǎng)度; (2)當(dāng)點(diǎn)距離點(diǎn)多遠(yuǎn)時(shí),三條觀光道路的總長(zhǎng)度最?。? 18. (本小題滿分16分) 已知橢圓的離心率為,分別為橢圓的上、下頂點(diǎn), . (1)求橢圓的方程; (2)設(shè)是
5、橢圓上的兩點(diǎn)(異于點(diǎn)),的面積為. ①若點(diǎn)坐標(biāo)為,求直線的方程; ②過(guò)點(diǎn)作直線,交橢圓于點(diǎn),求證:. x y O A B (第18題) 19. (本小題滿分16分) 已知函數(shù)(為自然對(duì)數(shù)的底數(shù)) (1)求的單調(diào)區(qū)間; (2)是否存在正實(shí)數(shù)使得,若存在求出,否則說(shuō)明理由; (3)若存在不等實(shí)數(shù),使得,證明:. 20. (本題滿分16分) 已知數(shù)列,滿足,,,,其中,設(shè)數(shù)列的
6、前項(xiàng)和分別為. (1)若對(duì)任意的恒成立,求; (2)若常數(shù)且對(duì)任意的,恒有,求的值; (3)在(2)的條件下且同時(shí)滿足以下兩個(gè)條件(ⅰ)若存在唯一的值滿足; (ⅱ) 恒成立.問(wèn):是否存在正整數(shù),使得,若存在,求的值;若不存在,說(shuō)明理由. 數(shù)學(xué)Ⅱ(附加題) 注 意 事 項(xiàng) 考生在答題前請(qǐng)認(rèn)真閱讀本注意事項(xiàng)及各題答題要求 1.本試卷共2頁(yè),均為非選擇題(第21題~第23題)。本卷滿分為40分,考試時(shí)間為30分鐘??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。 2.答題前,請(qǐng)您務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)
7、定位置。 3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與您本人是否相符。 4.作答試題,必須用0.5毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在 其他位置作答一律無(wú)效。中國(guó)數(shù)學(xué)教育網(wǎng) 5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗。ht 21.【選做題】本題包括A、B、C、D四小題,請(qǐng)選定其中兩小題,并在相應(yīng)的答題區(qū)域內(nèi)作答,若多做,則按作答的前兩小題評(píng)分.解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟. A B C D E F (第21-A題) A.[選修4-1:幾何證明選講](本小題滿分10分) 如圖,是圓的直徑,弦,的延長(zhǎng)線
8、相交于點(diǎn),垂直的延長(zhǎng)線于點(diǎn). 求證: B.[選修4-2:矩陣與變換](本小題滿分10分) 變換是逆時(shí)針旋轉(zhuǎn)的旋轉(zhuǎn)變換,對(duì)應(yīng)的變換矩陣是;變換對(duì)應(yīng)用的變換矩陣是.求函數(shù)的圖象依次在,變換的作用下所得曲線的方程. C.[選修4—4:坐標(biāo)系與參數(shù)方程](本小題滿分10分) 在極坐標(biāo)系中,直線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),求直線與曲線的交點(diǎn)的直角坐標(biāo). D.[選修4—4:不等式選講](本小題滿分10分) 已知都是正實(shí)數(shù),且,求證: . 【必做題】第22題、
9、第23題,每題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫 出文字說(shuō)明、證明過(guò)程或演算步驟. 22.(本小題滿分10分) 高三年級(jí)成立籃球、足球、排球活動(dòng)興趣小組,學(xué)生是否參加哪個(gè)興趣小組互不影響.已知某同學(xué)只參加籃球興趣小組的概率為0.08,只參加籃球和足球興趣小組的概率為0.12,至少參加一個(gè)興趣小組的概率是0.88.若學(xué)生參加的興趣小組數(shù)為,沒(méi)有參加的興趣小組數(shù)為,記. (1)求該同學(xué)參加排球活動(dòng)興趣小組的概率; (2)求的分布列和數(shù)學(xué)期望. 23.(本小題滿分10分) 設(shè)個(gè)實(shí)數(shù);滿足下列條件: ①; ②,; ③,. 設(shè). (1)設(shè),求證:;
10、 (2)如果,求證:. 徐州市2016年高考數(shù)學(xué)信息卷 數(shù)學(xué)Ⅰ參考答案 一、 填空題:本題共14小題,每小題5分,共70分.請(qǐng)把答案填寫在答題紙相應(yīng)位置上. 1. 2. 3. 70 4. 5. 124 6. 31 7. 8. 9. 10. 11. 12. 13. 14.1 二、解答題:本大題共6小題,共計(jì)90分,請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟. 15.(1)證明:∵,∴ 由正弦定理得, ……………………2分 化簡(jiǎn)得, ∴ ∴ …………
11、…………4分 ∴ ∴ ∴,,成等差數(shù)列. ……………………6分 (2)解:∵,, 由余弦定理得, 即 ……………………8分 ∴ ……………………10分 又∵ ∴ ……………………12分 ∴Δ的面積. ……………………14分 16.證明:(1),, 平面平面,
12、 ……………………2分 又在直三棱柱中,,, , ……………………6分 平面 ; ……………………8分 (2)連結(jié) ,設(shè) ,連結(jié) , 且,, 是等腰直角三角形的斜邊 上的高線,且 ……………………10分 也是斜邊 上的中線,即點(diǎn) 為邊的中點(diǎn), 的中位線 ,
13、 ……………………12分 (第16題圖) B A C E F G A1 B1 C1 平面. ……………………14分 17.解:(1)在 中,, ……………………2分 又四邊形 為平行四邊形 , , ……………………6分 (2)設(shè)三條觀光道路的總長(zhǎng)度為 ,則 ……………………8分 由 得,由 得 ; 當(dāng)
14、時(shí), 是減函數(shù),當(dāng)時(shí), 是增函數(shù); 當(dāng)時(shí),取得最小值,此時(shí) . ……………………14分 18.解:(1)由題意得: 解得: 故橢圓的方程為:. …………………………………4分 (2)①當(dāng)點(diǎn)坐標(biāo)為時(shí),, 因?yàn)榈拿娣e為,所以點(diǎn)到直線:的距離為,…6分 故點(diǎn)在直線或上. 代入橢圓方程,得或 ………………………8分 故直線的方程為或. …………………………………………10分 ②先證明.設(shè),, 若直線的斜率不存在,易得, 從而可得.………………11分 若直線的斜率存在,
15、設(shè)直線的方程為, 代入,得, 解得, ……………………………………………12分 所以,(在軸同(異)側(cè)都成立) 即,得.………………………13分 所以, 所以 …………………………14分 又設(shè),得, 因?yàn)?,? 所以,即.………………………………………………………16分 19. 解:(1)函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間為. (2)不存在正實(shí)數(shù)使得成立. 事實(shí)上,由(1)知函數(shù)在上遞增,而當(dāng),有,在上遞減,有,因此,若存在正實(shí)數(shù)使得,必有. 令,則,因?yàn)?,所以,所以為上的增函?shù),所以,即,故不存在正實(shí)數(shù)使得成立. (3)若存在不
16、等實(shí)數(shù),使得,則和中,必有一個(gè)在,另一個(gè)在,不妨設(shè),. ①若,則,由(Ⅰ)知:函數(shù)在上單調(diào)遞減,所以; ②若,由(Ⅱ)知:當(dāng),則有,而 所以,即 而,由(Ⅰ)知:函數(shù)在上單調(diào)遞減,所以,即有,由(Ⅰ)知:函數(shù)在上單調(diào)遞減,所以; 綜合①,②得:若存在不等實(shí)數(shù),使得,則總有. 20. 解:(1)由題設(shè)可知數(shù)列構(gòu)成以為首項(xiàng),2為公差的等差數(shù)列 故 -----------3分 (2)因?yàn)?所以, 故得所以 因?yàn)?,所?所以,故 ---9分 (3)因?yàn)?
17、所以或者 當(dāng)時(shí),舍去 當(dāng)時(shí), 故 -----------9分 因?yàn)樗? 令,則,得 故滿足的值為1,2,3 ---------12分 當(dāng),若,則數(shù)列前4項(xiàng)為:滿足 若,則數(shù)列前4項(xiàng)為:不滿足舍去; 若,則數(shù)列前4項(xiàng)為:不滿足舍去; 若,則數(shù)列前4項(xiàng)為:不滿足舍去; 當(dāng),若,則數(shù)列前3項(xiàng)為:不滿足舍去; 若,則數(shù)列前3項(xiàng)為:不滿足舍去; 若,則數(shù)列前3項(xiàng)為:不滿足舍去; 當(dāng),若,則數(shù)列前2項(xiàng)為:滿足; 若,
18、則數(shù)列前2項(xiàng)為:不滿足舍去; 所以存在正整數(shù),使得, 此時(shí),或者。 -----------16分 徐州市2016年高考數(shù)學(xué)信息卷 數(shù)學(xué)Ⅱ(附加題)參考答案 21.A.證明:連接,因?yàn)闉閳A的直徑,所以, 又,則四點(diǎn)共圓, 所以. …………………………………………………………5分 又△∽△, 所以,即, ∴.…………………10分 B.解:(Ⅰ),,…………………………5分 設(shè)是變換后圖像上任一點(diǎn),與之對(duì)應(yīng)的變換前的點(diǎn)是,則, 也就是,即, 所以,所求曲線的方程是…………………………10分 C.解:方法一 設(shè)圓上任意一點(diǎn)的極坐標(biāo),過(guò)的直徑的另一端點(diǎn)為,連接.
19、則在直角三角形中,. 所以,即為圓的極坐標(biāo)方程.……………………………………10分 方法二 的直角坐標(biāo)為(),半徑, 所以圓的直角坐標(biāo)方程為,……………………………5分 即, 故圓的極坐標(biāo)方程為, 即. …………………………………………………………10分 D.證明:因?yàn)? ,………………………………………………………5分 又, 所以. …………………………………………………10分 【必做題】第22題、第23題,每題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫 出文字說(shuō)明、證明過(guò)程或演算步驟. 22.解:(1)設(shè)該同學(xué)參加籃球、足球
20、、排球活動(dòng)興趣小組的概率分別為、、. 依題意得, 解得, 所以該同學(xué)參加排球活動(dòng)興趣小組的概率為0.5. ……………………4分 (2)依題意知的所有可能取值為, 則的分布列為 -3 -1 1 3 0.12 0.38 0.38 0.12 所以的數(shù)學(xué)期望為…………10分 23.證明:⑴因?yàn)椋? 則由條件①,知,由②③,知,. 要證明,只要證明. 如果,由知對(duì)于一切,有,從而成立.………………………4分 ⑵當(dāng)時(shí). (?。┊?dāng)時(shí),;當(dāng)時(shí),, 所以結(jié)論成立.……………………………………………………………………………6分 (ⅱ)假設(shè)時(shí)結(jié)論成立,下面證明時(shí)結(jié)論也成立. 令,,則, 由及,知, , 而當(dāng)時(shí),. 故知對(duì)于關(guān)于時(shí)的條件成立.……………………………………………8分 因此由歸納假設(shè)知,即 由(?。?ⅱ)可知,,即.………………………10分 21
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 指向核心素養(yǎng)發(fā)展的高中生物學(xué)1輪復(fù)習(xí)備考建議
- 新課程新評(píng)價(jià)新高考導(dǎo)向下高三化學(xué)備考的新思考
- 新時(shí)代背景下化學(xué)高考備考策略及新課程標(biāo)準(zhǔn)的高中化學(xué)教學(xué)思考
- 2025屆江西省高考政治二輪復(fù)習(xí)備考建議
- 新教材新高考背景下的化學(xué)科學(xué)備考策略
- 新高考背景下的2024年高考化學(xué)二輪復(fù)習(xí)備考策略
- 2025屆高三數(shù)學(xué)二輪復(fù)習(xí)備考交流會(huì)課件
- 2025年高考化學(xué)復(fù)習(xí)研究與展望
- 2024年高考化學(xué)復(fù)習(xí)備考講座
- 2025屆高考數(shù)學(xué)二輪復(fù)習(xí)備考策略和方向
- 2024年感動(dòng)中國(guó)十大人物事跡及頒獎(jiǎng)詞
- XX教育系統(tǒng)單位述職報(bào)告教育工作概述教育成果展示面臨的挑戰(zhàn)未來(lái)規(guī)劃
- 2025《增值稅法》全文解讀學(xué)習(xí)高質(zhì)量發(fā)展的增值稅制度規(guī)范增值稅的征收和繳納
- 初中資料:400個(gè)語(yǔ)文優(yōu)秀作文標(biāo)題
- 初中語(yǔ)文考試專項(xiàng)練習(xí)題(含答案)