第08講 圖的基本概念及最小支撐樹問題

上傳人:奔*** 文檔編號:29370902 上傳時間:2021-10-07 格式:PPT 頁數(shù):21 大?。?00.50KB
收藏 版權申訴 舉報 下載
第08講 圖的基本概念及最小支撐樹問題_第1頁
第1頁 / 共21頁
第08講 圖的基本概念及最小支撐樹問題_第2頁
第2頁 / 共21頁
第08講 圖的基本概念及最小支撐樹問題_第3頁
第3頁 / 共21頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《第08講 圖的基本概念及最小支撐樹問題》由會員分享,可在線閱讀,更多相關《第08講 圖的基本概念及最小支撐樹問題(21頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、圖的基本概念及最小支撐樹問題 無向圖定義 無向圖G = , 其中(1) V 為頂點集,元素稱為頂點(2) E為VV 的多重集,其元素稱為無向邊,簡稱邊實例 設 V = v1, v2, ,v5, E = (v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5) 則 G = 為一無向圖相關定義1.鄰接:兩個點有公共邊,兩條邊有公共頂點;2.關聯(lián):邊與其頂點;3.環(huán):一條邊的兩個頂點重合;4.重邊:兩個點之間有多于一條邊;5.簡單圖:既無環(huán)也無重邊的圖;6.補圖:圖G的補圖定義為 :與G有相同的頂點集, 中兩個點相鄰當且僅當它們在G中

2、不相鄰;7.二部分圖(二分圖)8.支撐子圖9.導出子圖10. 點度、通路、回路GG有向圖定義 有向圖D=, 只需注意E是VV 的多重子集圖2表示的是一個有向圖,試寫出它的V 和 E 注意:圖的數(shù)學定義與圖形表示,在同構的意義下是一一對應的網(wǎng)絡(帶權圖)對于圖G的每條邊e都賦予一個值w(e),稱為邊的權,則G連同邊上的權稱為一個網(wǎng)絡,記為G=(V,E,w)無向圖的關聯(lián)矩陣無向圖的關聯(lián)矩陣(對圖無限制)定義 無向圖G=,|V|=n,|E|=m,令 mij為 vi 與 ej的關聯(lián)次數(shù),稱(mij)nm為G 的關聯(lián)矩陣,記為M(G). 性質:平行邊的列相同平行邊的列相同)4(2)3(),.,2 , 1

3、()()2(),.,2 , 1(2)1(,11mmnivdmmjmjiijimjijniij jiijmjmjiijiijniijmnivdmvdmmjm,1110)3(,.,2 , 1),()1(),()1()2(),.,2 , 1(0)1( 的的終終點點為為,不不關關聯(lián)聯(lián)與與,的的始始點點為為jijijiijevevevm10,1 定義定義 有向圖有向圖D=,則稱則稱 (mij)n m為為D的的關聯(lián)矩陣關聯(lián)矩陣,記為,記為M(D). (4) 平行邊對應的列相同平行邊對應的列相同性質性質有向圖的關聯(lián)矩陣鄰接矩陣定義 設無向圖D=, V=v1, v2, , vn, E=e1, e2, , em

4、, 令cij為頂點 vi 和 vj 之間邊的條數(shù),稱(cij)為D的鄰接矩陣,記作A(D),或簡記為A. 定義 設有向圖D=, V=v1, v2, , vn, E=e1, e2, , em, 令cij為頂點 vi 鄰接到頂點 vj 邊的條數(shù),稱(cij)為D (cij)的鄰接矩陣,記作A(D),或簡記為A. 圖的連通性無向圖的連通性(1) 頂點之間的連通關系:G=為無向圖 若 vi 與 vj 之間有通路,則 vivj 是V上的等價關系 R=| u,v V且uv (2) G的連通性與連通分支 若u,vV,uv,則稱G連通 V/R=V1,V2,Vk,稱GV1, GV2, ,GVk為連通分 支,其個

5、數(shù) p(G)=k (k1); k=1,G連通割集1. 刪除頂點及刪除邊 Gv 從G中將v及關聯(lián)的邊去掉 GV從G中刪除V中所有的頂點 Ge 將e從G中去掉 GE刪除E中所有邊 2. 點割集與邊割集 點割集與割點定義 G=, VV V為點割集p(GV)p(G)且有極小性 v為割點v為點割集定義 G=, EE E是邊割集p(GE)p(G)且有極小性 e是割邊(橋)e為邊割集無向樹定義(1) 無向樹連通無回路的無向圖(2) 平凡樹平凡圖(3) 森林至少由兩個連通分支(每個都是樹)組成(4) 樹葉1度頂點(5) 分支點度數(shù)2的頂點 樹的充要條件定理16.1 設G=是n階m條邊的無向圖,則下面各命題是等

6、價的:(1) G 是樹(2) G 中任意兩個頂點之間存在惟一的路徑.(3) G 中無回路且 m=n1. (4) G 是連通的且 m=n1.(5) G 是連通的且 G 中任何邊均為橋.(6) G 中沒有回路,但在任何兩個不同的頂點之間加一條新邊,在所得圖中得到惟一的一個含新邊的圈. 支撐樹定義:T為G的支撐子圖,且T為樹,稱T為G的支撐樹。定理:G有支撐樹當且僅當G為連通圖;12121212121200121212(,):,( ),(,)(,)( ).,( ):,(,)( )S SS SV GSSS SSSS SE GTGTGTTTeTTeT TS SS SGe且表示 與之間的邊的集合,且反樹:

7、設 為圖 的支撐樹,令稱為 的反樹。對于 的任意一條邊,不連通,設其兩個連通分支分別為它們所對應的點集分別為,則構成 的一個割集,記為。支撐樹 000,1( ):,TGTGTeTeTeGnGC eTe Te定理:設 是圖 的支撐樹,則不包含 的任何割集,但對中任一條邊存在唯一的割集,它包含在中?;靖罴簩τ?每條邊 都存在 的唯一割集,這樣的割集一共個,稱為 的基本割集。對于中每一條邊都包含唯一的回路.最小值支撐(生成)樹定義:網(wǎng)絡中權值最小的支撐樹,稱為該網(wǎng)絡的最小支撐樹。0( )( )( )max( )( )min( )eC eeeTGTGTew ew eTew ew e定理:設 是 的

8、支撐樹,則下面幾個命題等價:(1):是 的最小支撐樹;(2): 對任意上的邊 有(3): 對任意 上的邊 有Kruskal算法 121.( )().(),0,1;2. 343.1,24. ,1;5.1 mjjw ew ew eSijG SejjjmSSeiiinG S 設若包含圈,轉 ,否則轉 ;令若轉 ,否則停止;令并設若,則結束,這時即為所求;否則轉2.Kruskal算法設G=,將G中非環(huán)邊按權從小到大排序:e1, e2, , em.(1) 取e1在T中(2) 查e2,若e2與e1不構成回路,取e2也在T 中,否則棄e2.(3) 再查e3, 直到得到生成樹為止. 例子所求最小生成樹如所求最小生成樹如圖所示,圖所示,W(T)=38. 求圖的一棵最小生成樹求圖的一棵最小生成樹.Dijkstra算法 12311., , ,.,2.min , , , ;3.,min ,2.tniikiikkvSkkikjjjkjTRvSv vvuwuuwuRRvSSvTTeSTvSuu w令選取若則停止,G中不存在支撐樹;否則令若,則停止, 為最小支撐樹;否則對于一切令轉時間復雜性Kruskal算法:Dijkstra算法:2(log )O nn2()O n作業(yè)140:1,2P

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!