【北師大版數(shù)學】步步高大一輪復習練習:第二章 函數(shù)與基本初等函數(shù)
《【北師大版數(shù)學】步步高大一輪復習練習:第二章 函數(shù)與基本初等函數(shù)》由會員分享,可在線閱讀,更多相關《【北師大版數(shù)學】步步高大一輪復習練習:第二章 函數(shù)與基本初等函數(shù)(30頁珍藏版)》請在裝配圖網上搜索。
1、第二章 函數(shù)與基本初等函數(shù)Ⅰ 2.1 函數(shù)及其表示 (時間:45分鐘 滿分:100分) 一、選擇題(每小題7分,共35分) 1.下列四組函數(shù)中,表示同一函數(shù)的是 ( ) A.y=x-1與y= B.y=與y= C.y=4lg x與y=2lg x2 D.y=lg x-2與y=lg 2.(2010廣東)函數(shù)f(x)=lg(x-1)的定義域是 ( ) A.(2,+∞) B.(1,+∞) C.[1,+∞) D.[2,+∞) 3.已知f(x)=,則f +f 等于 ( ) A.-2
2、 B.4 C.2 D.-4
4.已知函數(shù)f(x)=lg(x+3)的定義域為M,g(x)=的定義域為N,則M∩N等于( )
A.{x|x>-3} B.{x|-3 3、(x)≥-1成立的x的取值范圍是__________.
8.若函數(shù)y=f(x)的定義域是[0,2],則函數(shù)g(x)=的定義域是_______________________.
9.已知f =x2+,則f(3)=________.
三、解答題(共41分)
10.(13分)求下列函數(shù)的定義域:
(1)f(x)=;
(2)y=-lg cos x;
(3)y=lg(x-1)+lg +.
11.(14分)甲同學家到乙同學家的途中有一公園,甲從家到公園的距離與乙從家到公園的距離都是2 km,甲10時出發(fā)前往乙家.如圖所示,表示甲從家出發(fā)到達乙家為止經過的路程y(km)與時間x(分)的關系. 4、試寫出y=f(x)的函數(shù)解析式.
12.(14分)已知函數(shù)f(x)=2x-1,g(x)=
求f[g(x)]和g[f(x)]的解析式.
答案
1.D 2.B 3.B 4.B 5.D
6.(-∞,3] 7.[-4,2] 8.[0,1) 9.11
10.解 (1)?x<4且x≠3,
故該函數(shù)的定義域為(-∞,3)∪(3,4).
(2),
即
故所求定義域為
∪∪.
(3),即,
解得1 5、+b1,
由已知得,解得
∴y=x.
當x∈(30,40)時,y=2;
當x∈[40,60]時,設y=k2x+b2,
由已知得,解得,
∴y=x-2.
綜上,f(x)=.
12.解 當x≥0時,g(x)=x2,
f[g(x)]=2x2-1,
當x<0時,g(x)=-1,
f[g(x)]=-2-1=-3,
∴f[g(x)]=
∵當2x-1≥0,即x≥時,
g[f(x)]=(2x-1)2,
當2x-1<0,即x<時,g[f(x)]=-1,
∴g[f(x)]=
、
2.2 函數(shù)的單調性與最值
6、
(時間:45分鐘 滿分:100分)
一、選擇題(每小題7分,共35分)
1.(2010北京)給定函數(shù)①y=x,②y=log(x+1),③y=|x-1|,④y=2x+1,其中在區(qū)間(0,1)
上遞減的函數(shù)的序號是 ( )
A.①② B.②③
C.③④ D.①④
2.已知f(x)是R上的增函數(shù),A(0,-1),B(3,1)是其圖像上的兩個點,那么|f(x+1)|<1的解
集是 ( )
A.(3,+∞) B.[2,+∞)
C.(-1,2) D.(2,3 7、)
3.若函數(shù)y=ax與y=-在(0,+∞)上都是減函數(shù),則y=ax2+bx在(0,+∞)上是( )
A.增函數(shù) B.減函數(shù)
C.先增后減 D.先減后增
4.已知奇函數(shù)f(x)對任意的正實數(shù)x1,x2(x1≠x2),恒有(x1-x2)(f(x1)-f(x2))>0,則一定正確
的是 ( )
A.f(4)>f(-6) B.f(-4) 8、A. B.
C. D.
二、填空題(每小題6分,共24分)
6.函數(shù)f(x)=的單調增區(qū)間為____________.
7.設x1,x2為y=f(x)的定義域內的任意兩個變量,有以下幾個命題:
①(x1-x2)[f(x1)-f(x2)]>0;
②(x1-x2)[f(x1)-f(x2)]<0;
③>0;
④<0.
其中能推出函數(shù)y=f(x)為增函數(shù)的命題為_________________________________.
8.如果函數(shù)f(x)=ax2+2x-3在區(qū)間(-∞,4)上是單調遞增的,則實數(shù)a的取值范圍是
__________.
9、
9.若函數(shù)f(x)=在區(qū)間(m,2m+1)上是單調遞增函數(shù),則m的取值范圍是_
_______________.
三、解答題(共41分)
10.(13分)已知函數(shù)y=f(x)在[0,+∞)上是減函數(shù),試比較f 與f(a2-a+1)的大?。?
11.(14分)已知f(x)= (x≠a).
(1)若a=-2,試證f(x)在(-∞,-2)內單調遞增;
(2)若a>0且f(x)在(1,+∞)內單調遞減,求a的取值范圍.
12.(14分)已知f(x)是定義在(-1,1)上的奇函數(shù),且f(x)在(-1,1)上是減函數(shù),解不等式
f(1-x)+f(1-x2)<0.
10、
答案
1.B 2.C 3.B 4.C 5.D
6.[3,+∞) 7.①③ 8. 9.(-1,0]
10.解 ∵a2-a+1=2+≥>0,
又∵y=f(x)在[0,+∞)上是減函數(shù),
∴f(a2-a+1)≤f.
11.(1)證明 任設x1 11、>0,x2-x1>0,
∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,∴a≤1.
綜上所述知0
12、+b(b為常數(shù)),則
f(-1)等于 ( )
A.3 B.1 C.-1 D.-3
2.(2010全國)設偶函數(shù)f(x)滿足f(x)=2x-4(x≥0),則{x|f(x-2)>0}等于 ( )
A.{x|x<-2或x>4} B.{x|x<0或x>4}
C.{x|x<0或x>6} D.{x|x<-2或x>2}
3.已知f(x) (x∈R)為奇函數(shù),f(2)=1,f(x+2)=f(x)+f(2),則f(3)等于 ( )
A. B.1 C. D.2
4.若函數(shù)f(x) 13、是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(2)=0,則使得f(x)<0
的x的取值范圍是 ( )
A.(-∞,2) B.(-2,2)
C.(-∞,-2)∪(2,+∞) D.(2,+∞)
5. f(x)是定義在R上的以3為周期的偶函數(shù),且f(2)=0,則方程f(x)=0在區(qū)間(0,6)內解
的個數(shù)至少是 ( )
A.1 B.4 C.3 D.2
二、填空題(每小題6分,共24分)
6.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),則f(2)=______ 14、__.
7.(2010江蘇)設函數(shù)f(x)=x(ex+ae-x)(x∈R)是偶函數(shù),則實數(shù)a的值為________.
8.已知定義在R上的函數(shù)f(x)滿足f(x+5)=-f(x)+2,且當x∈(0,5)時,f(x)=x,則f(2 011)
的值為________.
9.定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且在[-1,0]上是增函數(shù),給出下列關于
f(x)的判斷:
①f(x)是周期函數(shù);
②f(x)關于直線x=1對稱;
③f(x)在[0,1]上是增函數(shù);
④f(x)在[1,2]上是減函數(shù);
⑤f(2)=f(0).
其中正確的序號是________.
三 15、、解答題(共41分)
10.(13分)已知f(x)是定義在[-1,1]上的奇函數(shù),若a、b∈[-1,1],a+b≠0時,有
>0.判斷函數(shù)f(x)在[-1,1]上是增函數(shù)還是減函數(shù),并證明你的結論.
11.(14分)已知函數(shù)f(x)對一切x,y∈R,都有f(x+y)=f(x)+f(y).
(1)求證:f(x)是奇函數(shù);
(2)若f(-3)=a,用a表示f(12).
12.(14分)函數(shù)y=f(x) (x≠0)是奇函數(shù),且當x∈(0,+∞)時是增函數(shù),若f(1)=0,求不等
式f <0的解集.
答案
1.D 2.B 3.C 4.B 5.B
6.0 7.-1 8. 16、1 9.①②⑤
10.解 f(x)在[-1,1]上是增函數(shù).
證明如下:
任取x1、x2∈[-1,1],且x1 17、0,
∴f(x)+f(-x)=0,即f(-x)=-f(x),
∴f(x)是奇函數(shù).
(2)解 由f(-3)=a,f(x+y)=f(x)+f(y)及f(x)是奇函數(shù),得f(12)=2f(6)=4f(3)=
-4f(-3)=-4a.
12.解 ∵y=f(x)是奇函數(shù),
∴f(-1)=-f(1)=0.
又∵y=f(x)在(0,+∞)上是增函數(shù),
∴y=f(x)在(-∞,0)上是增函數(shù),
若f <0=f(1),
∴,即0 18、
2.4 二次函數(shù)
(時間:45分鐘 滿分:100分)
一、選擇題(每小題7分,共35分)
1.若函數(shù)y=(x+1)(x-a)為偶函數(shù),則a等于 ( )
A.-2 B.-1 C.1 D.2
2.“a<0”是“方程ax2+1=0有一個負數(shù)根”的 ( )
A.必要不充分條件 B.充分必要條件
C.充分不必要條件 D.既不充分也不必要條件
3.一次函數(shù)y=ax+b與二次函數(shù)y=ax2+bx+c在同一坐標系中的圖像大致是 ( )
4.已知二次函數(shù)f( 19、x)=x2+ax+5,對任意實數(shù)t都有f(t)=f(-4-t),且在閉區(qū)間[m,0]上有最
大值5,最小值1,則m的取值范圍是 ( )
A.m≤-2 B.-4≤m≤-2
C.-2≤m≤0 D.-4≤m≤0
5.函數(shù)f(x)=-x2+(2a-1)|x|+1的定義域被分成了四個不同的單調區(qū)間,則實數(shù)a的取值
范圍是 ( )
A.a> B. D.a<
二、填空題(每小題6分,共24分)
6.方程x2-mx+1=0的兩根為α,β,且α>0,1<β< 20、2,則實數(shù)m的取值范圍是 .
7.若方程x2-11x+30+a=0的兩根均大于5,則實數(shù)a的取值范圍是________.
8.函數(shù)f(x)=ax2+ax-1,若f(x)<0在R上恒成立,則a的取值范圍是____________________.
9.設二次函數(shù)f(x)=ax2+2ax+1在[-3,2]上有最大值4,則實數(shù)a的值為__________.
三、解答題(共41分)
10.(13分)f(x)=-x2+ax+-在區(qū)間[0,1]上的最大值為2,求a的值.
11.(14分)是否存在實數(shù)a,使函數(shù)f(x)=x2-2ax+a的定義域為[-1,1]時,值域為[-2,2]?
21、若存在,求a的值;若不存在,說明理由.
12.(14分)已知函數(shù)f(x)=x2,g(x)=x-1.
(1)若存在x∈R使f(x) 22、.
③當<0時,即a<0時,f(x)max=f(0)=2?a=-6.
f(x)在區(qū)間[0,1]上最大值為2時a=或a=-6.
11.解 f(x)=(x-a)2+a-a2.
當a<-1時,f(x)在[-1,1]上為增函數(shù),
∴
?a=-1(舍去);
當-1≤a≤0時,
?a=-1;
當01時,f(x)在[-1,1]上為減函數(shù),
∴?a不存在.
綜上可得a=-1.
12.解 (1)存在x∈R,f(x) 23、m2-4(1-m2)=5m2-4.
①當Δ≤0,即-≤m≤時,則必需
?-≤m≤0.
②當Δ>0,即m<-或m>時,設方程F(x)=0的根為x1,x2(x1 24、,+∞)
C.(-∞,0] D.(-∞,0)
2.如果冪函數(shù)y=(m2-3m+3)的圖像不過原點,則m的取值是 ( )
A.-1≤m≤2 B.m=1或m=2
C.m=2 D.m=1
3.冪函數(shù)y=x-1及直線y=x,y=1,x=1將平面直角坐標系的第一象限分成八個“卦限”:
①,②,③,④,⑤,⑥,⑦,⑧(如圖所示),那么冪函數(shù)y=的圖像經過的“卦限”是
( )
A.④,⑦ B.④,⑧
C.③,⑧ D.①,⑤
4. 25、(原創(chuàng))若a=,b=,c=,它們的大小關系是 ( )
A.cn,則n=________.
8.給出關于冪函數(shù)的以下命題:①冪函數(shù) 26、的圖像都經過(1,1)點;
②冪函數(shù)的圖像都經過(0,0)點;
③冪函數(shù)不可能既不是奇函數(shù)也不是偶函數(shù);
④冪函數(shù)的圖像不可能經過第四象限;
⑤冪函數(shù)在第一象限內一定有圖像;
⑥冪函數(shù)在(-∞,0)上不可能是增函數(shù),
其中正確命題的序號是________.
9.函數(shù)f(x)=(m∈N+)的定義域是__________,單調遞增區(qū)間是__________.
三、解答題(共41分)
10.(13分)已知f(x)=(m2+m) ,當m取什么值時,
(1)f(x)是正比例函數(shù);
(2)f(x)是反比例函數(shù);
(3)在第一象限內它的圖像是上升曲線.
11.(14分)點( ,2) 27、在冪函數(shù)f(x)的圖像上,點在冪函數(shù)g(x)的圖像上,問當x為
何值時,有f(x)>g(x),f(x)=g(x),f(x)<g(x).
12.(14分)已知f(x)=(n=2k,k∈Z)的圖像在[0,+∞)上是遞增的,解不等
式f(x2-x)>f(x+3).
2.6 指數(shù)與指數(shù)函數(shù)
(時間:45分鐘 滿分:100分)
一、選擇題(每小題7分,共35分)
1.下列等式=2a;=;-3=中一定成立的有 ( )
A.0個 B.1個 C.2個 D.3個
2.把函數(shù)y=f(x)的圖像向左、向下分別平移2個單 28、位長度得到函數(shù)y=2x的圖像,則( )
A.f(x)=2x+2+2 B.f(x)=2x+2-2
C.f(x)=2x-2+2 D.f(x)=2x-2-2
3.函數(shù)y=a|x|(a>1)的圖像是 ( )
4.函數(shù)f(x)=ax-b的圖像如圖所示,其中a、b為常數(shù),則下列結
論正確的是 ( )
A.a>1,b<0
B.a>1,b>0
C.00
D.0
29、則a,b,c的大小關系是( )
A.a>c>b B.a>b>c
C.c>a>b D.b>c>a
二、填空題(每小題6分,共24分)
6.已知函數(shù)f(x)=|2x-1|,af(c)>f(b),則下列結論中,一定成立的是________.
①a<0,b<0,c<0; ②a<0,b≥0,c>0;
③2-a<2c; ④2a+2c<2.
7.若指數(shù)函數(shù)y=ax 在[-1,1]上的最大值與最小值的差是1,則底數(shù)a=________.
8.函數(shù)f(x)= (a>1)恒過點(1,10),則m=________.
9.設函數(shù)f(x)= 30、a-|x| (a>0且a≠1),若f(2)=4,則f(-2)與f(1)的大小關系是__________.
三、解答題(共41分)
10.(13分)(1)計算:[-0.5+(0.008) (0.02)(0.32)]0.062 50.25;
(2)化簡:(式中字母都是正數(shù)).
11.(14分)已知對任意x∈R,不等式恒成立,求實數(shù)m的取值
范圍.
12.(14分)已知函數(shù)f(x)=bax (其中a,b為常量,且a>0,a≠1)的圖像經過點A(1,6),B(3,24).
(1)求f(x);
(2)若不等式x+x-m≥0在x∈(-∞,1]時恒成立,求實數(shù)m的取值范圍.
答案
1.A 31、 2.C 3.B 4.D 5.A
6.④ 7. 8.9 9.f(-2)>f(1)
10.解 (1)原式=
=
=2=.
(2)原式=
=
=
11.解 由題知:不等式對x∈R恒成立,
∴x2+x<2x2-mx+m+4對x∈R恒成立.∴x2-(m+1)x+m+4>0對x∈R恒成立.
∴Δ=(m+1)2-4(m+4)<0.
∴m2-2m-15<0.∴-3 32、在(-∞,1]上為單調遞減的,
∴當x=1時,y=x+x有最小值.
∴只需m≤即可.
2.7 對數(shù)與對數(shù)函數(shù)
(時間:45分鐘 滿分:100分)
一、選擇題(每小題7分,共35分)
1.函數(shù)y=的定義域是 ( )
A.{x|0 33、A.0a>1 D.a>b>1
3.(2010天津)設a=log54,b=(log53)2,c=log45,則 ( )
A.a 34、 B.- C. D.2
二、填空題(每小題6分,共24分)
6.已知a= (a>0),則loga=________.
7.已知00,a≠1).
(1)求f(x)的定義 35、域;
(2)判斷f(x)的奇偶性并予以證明;
(3)求使f(x)>0的x的取值范圍.
12.(14分)若函數(shù)y=lg(3-4x+x2)的定義域為M.當x∈M時,求f(x)=2x+2-34x的最值
及相應的x的值.
答案
1.D 2.D 3.D 4.C 5.C
6.3 7.m>n 8.(-∞,-1) 9.(-∞,-3]
10.解 (1)原式===1.
(2)原式=lg(2lg+lg 5)+
=lg(lg 2+lg 5)+|lg-1|
=lglg(25)+1-lg=1.
11.解 (1)∵f(x)=loga,需有>0,
即(1+x)(1-x)>0,即( 36、x+1)(x-1)<0,∴-1 37、
12.解 ∵y=lg(3-4x+x2),∴3-4x+x2>0,解得x<1或x>3,∴M={x|x<1,或x>3},
f(x)=2x+2-34x=42x-3(2x)2.
令2x=t,∵x<1或x>3,
∴t>8或0 38、2.8 函數(shù)與方程
(時間:45分鐘 滿分:100分)
一、選擇題(每小題7分,共35分)
1.在以下區(qū)間中,存在函數(shù)f(x)=x3+3x-3的零點的是 ( )
A.[-1,0] B.[1,2]
C.[0,1] D.[2,3]
2.方程2-x+x2=3的實數(shù)解的個數(shù)為 ( )
A.2 B.3 C.1 D.4
3.函數(shù)f(x)=的零點的個數(shù)是 ( )
A.0 B.1 C.2 D.3
4.方程|x2-2x|=a2+1 (a>0)的解的個數(shù)是 39、 ( )
A.1 B.2 C.3 D.4
5.(2010天津)函數(shù)f(x)=ex+x-2的零點所在的一個區(qū)間是 ( )
A.(-2,-1) B.(-1,0)
C.(0,1) D.(1,2)
二、填空題(每小題6分,共24分)
6.函數(shù)f(x)=3x-7+ln x的零點位于區(qū)間(n,n+1) (n∈N)內,則n=________.
7.已知函數(shù)f(x)=x2+(1-k)x-k的一個零點在(2,3)內,則實數(shù)k的取值范圍是________.
8.若函數(shù)f(x)=x2+ax+b的兩個零點是-2和3,則不等式af(- 40、2x)>0的解集是
________________.
9.若f(x)= 則函數(shù)g(x)=f(x)-x的零點為____________.
三、解答題(共41分)
10.(13分)關于x的二次方程x2+(m-1)x+1=0在區(qū)間[0,2]上有解,求實數(shù)m的取值范圍.
11.(14分)已知函數(shù)f(x)=4x+m2x+1有且僅有一個零點,求m的取值范圍,并求出該零點.
12.(14分)(1)m為何值時,f(x)=x2+2mx+3m+4.
①有且僅有一個零點;②有兩個零點且均比-1大;
(2)若函數(shù)f(x)=|4x-x2|+a有4個零點,求實數(shù)a的取值范圍.
答案
41、1.C 2.A 3.D 4.B 5.C
6.2 7.(2,3) 8. 9.1+或1
10.解 設f(x)=x2+(m-1)x+1,x∈[0,2],
①若f(x)=0在區(qū)間[0,2]上有一解,
∵f(0)=1>0,則應有f(2)≤0,
又∵f(2)=22+(m-1)2+1,
∴m≤-.
②若f(x)=0在區(qū)間[0,2]上有兩解,則,
∴.
∴,∴-≤m≤-1,
由①②可知m≤-1.
11.解 即方程(2x)2+m2x+1=0僅有一個實根.
設2x=t (t>0),則t2+mt+1=0.
當Δ=0,即m2-4=0,∴m=-2時,t=1;
m=2時,t=-1
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 指向核心素養(yǎng)發(fā)展的高中生物學1輪復習備考建議
- 新課程新評價新高考導向下高三化學備考的新思考
- 新時代背景下化學高考備考策略及新課程標準的高中化學教學思考
- 2025屆江西省高考政治二輪復習備考建議
- 新教材新高考背景下的化學科學備考策略
- 新高考背景下的2024年高考化學二輪復習備考策略
- 2025屆高三數(shù)學二輪復習備考交流會課件
- 2025年高考化學復習研究與展望
- 2024年高考化學復習備考講座
- 2025屆高考數(shù)學二輪復習備考策略和方向
- 2024年感動中國十大人物事跡及頒獎詞
- XX教育系統(tǒng)單位述職報告教育工作概述教育成果展示面臨的挑戰(zhàn)未來規(guī)劃
- 2025《增值稅法》全文解讀學習高質量發(fā)展的增值稅制度規(guī)范增值稅的征收和繳納
- 初中資料:400個語文優(yōu)秀作文標題
- 初中語文考試專項練習題(含答案)