一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第三章 第六節(jié) 簡單的三角恒等變換 Word版含解析

上傳人:仙*** 文檔編號:40241733 上傳時(shí)間:2021-11-15 格式:DOC 頁數(shù):7 大?。?2KB
收藏 版權(quán)申訴 舉報(bào) 下載
一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第三章 第六節(jié) 簡單的三角恒等變換 Word版含解析_第1頁
第1頁 / 共7頁
一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第三章 第六節(jié) 簡單的三角恒等變換 Word版含解析_第2頁
第2頁 / 共7頁
一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第三章 第六節(jié) 簡單的三角恒等變換 Word版含解析_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第三章 第六節(jié) 簡單的三角恒等變換 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第三章 第六節(jié) 簡單的三角恒等變換 Word版含解析(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5 課時(shí)規(guī)范練 A組 基礎(chǔ)對點(diǎn)練 1.函數(shù)f(x)=(sin x+cos x)( cos x-sin x)的最小正周期是(  ) A.         B.π C. D.2π 解析:由題意得f(x)=2sin(x+)2cos(x+)=2sin(2x+).故該函數(shù)的最小正周期T==π.故選B. 答案:B 2.(20xx開封模擬)設(shè)a=cos 6-sin 6,b=,c= ,則(  ) A.c

2、cos 6-cos 30sin 6=sin 24,b=tan 26,c=sin 25,∴a

3、. 解析:由f(x)=sin 2x+cos 2x=sin知f(x)圖象的對稱軸方程為x=+(k∈Z),因此在y軸左側(cè)且離y軸最近的對稱軸方程為x=-.依題意結(jié)合圖象知,φ的最小正值為,故選C. 答案:C 5.(20xx惠州調(diào)研)函數(shù)y=cos 2x+2sin x的最大值為(  ) A. B.1 C. D.2 解析:y=cos 2x+2sin x=1-2sin2x+2sin x=-22+,因?yàn)椋?≤sin x≤1,所以當(dāng)sin x=時(shí),函數(shù)取最大值,故ymax=. 答案:C 6.已知2cos2x+sin 2x=Asin(ωx+φ)+b(A>0),則A=_______,b=__

4、_____. 解析:由于2cos2x+sin 2x=1+cos 2x+sin 2x=sin(2x+)+1,所以A=,b=1. 答案: 1 7.函數(shù)y=sin x+cos x的單調(diào)遞增區(qū)間是__________. 解析:因?yàn)閥=sin,則由2kπ-≤x+≤2kπ+,k∈Z,即2kπ-≤x≤2kπ+,k∈Z.當(dāng)x∈時(shí),單調(diào)遞增區(qū)間為. 答案: 8.已知函數(shù)f(x)=(sin x+cos x)sin x,x∈R,則f(x)的最小值是__________. 解析:f(x)=sin2x+sin xcos x=+sin 2x=sin+,當(dāng)sin=-1時(shí), f(x)min=. 答案: 9

5、.已知函數(shù)f(x)=(a+2cos2x)cos(2x+θ)為奇函數(shù),且f()=0,其中a∈R,θ∈(0,π). (1)求a,θ的值; (2)若f()=-,α∈(,π),求sin(α+)的值. 解析:(1)因?yàn)閒(x)=(a+2cos2x)cos(2x+θ)是奇函數(shù),而y1=a+2cos2x為偶函數(shù),所以y2=cos(2x+θ)為奇函數(shù),由θ∈(0,π),得θ=,所以f(x)=-sin 2x(a+2cos2x), 由f()=0得-(a+1)=0,即a=-1. (2)由(1)得f(x)=-sin 4x, 因?yàn)閒()=-sin α=-,即sin α=, 又α∈(,π),從而cos α=

6、-, 所以sin(α+)=sin αcos +cos αsin =. 10.已知a=(sin x,-cos x),b=(cos x,cos x),函數(shù)f(x)=ab+. (1)求f(x)的最小正周期,并求其圖象對稱中心的坐標(biāo); (2)當(dāng)0≤x≤時(shí),求函數(shù)f(x)的值域. 解析:(1)因?yàn)閒(x)=sin xcos x-cos2x+ =sin 2x-(cos 2x+1)+ =sin 2x-cos 2x=sin, 所以f(x)的最小正周期為π,令sin=0, 得2x-=kπ,∴x=π+,k∈Z, 故所求對稱中心的坐標(biāo)為(k∈Z). (2)∵0≤x≤,∴-≤2x-≤, ∴-≤

7、sin≤1,故f(x)的值域?yàn)? B組 能力提升練 1.已知函數(shù)f(x)=sin ωx+cos ωx(ω>0),x∈R.在曲線y=f(x)與直線y=1的交點(diǎn)中,若相鄰交點(diǎn)距離的最小值為,則f(x)的最小正周期為(  ) A. B. C.π D.2π 解析:由題意得函數(shù)f(x)=2sin(ωx+)(ω>0),又曲線y=f(x)與直線y=1相鄰交點(diǎn)距離的最小值是,由正弦函數(shù)的圖象知,ωx+=和ωx+=對應(yīng)的x的值相差,即=,解得ω=2,所以f(x)的最小正周期是T==π. 答案:C 2.函數(shù)f(x)=(1+cos 2x)sin2x(x∈R)是(  ) A.最小正周期為π的奇函數(shù)

8、 B.最小正周期為的奇函數(shù) C.最小正周期為π的偶函數(shù) D.最小正周期為的偶函數(shù) 解析: f(x)=(1+cos 2x)(1-cos 2x)=(1-cos22x)=sin22x=(1-cos 4x),f(-x)=(1-cos 4x)=f(x),因此函數(shù)f(x)是最小正周期為的偶函數(shù),選D. 答案:D 3.設(shè)α,β∈[0,π],且滿足sin αcos β-cos αsin β=1,則sin(2α-β)+sin(α-2β)的取值范圍為(  ) A.[-,1] B.[-1,] C.[-1,1] D.[1,] 解析:∵sin αcos β-cos αsin β=1?sin(α-β

9、)=1,α,β∈[0,π],∴α-β=, ∴?≤α≤π, ∴sin(2α-β)+sin(α-2β)=sin+sin(α-2α+π)=sin α+cos α=sin. ∵≤α≤π,∴≤α+≤π, ∴-1≤sin≤1, 即取值范圍是[-1,1],故選C. 答案:C 4.已知=k,0<θ<,則sin的值為(  ) A.隨著k的增大而增大 B.有時(shí)隨著k的增大而增大,有時(shí)隨著k的增大而減小 C.隨著k的增大而減小 D.是與k無關(guān)的常數(shù) 解析:==2sin θcos θ=sin 2θ,∵0<θ<,∴0

10、in θ-cos θ)2=1-sin 2θ,sin θ-cos θ=-=-,故sin=(sin θ-cos θ)=-,其值隨著k的增大而增大,故選A. 答案:A 5.函數(shù)f(x)=4cos xsin-1(x∈R)的最大值為__________. 解析:∵f(x)=4cos xsin-1 =4cos x-1=2sin xcos x+2cos2x-1=sin 2x+cos 2x=2sin, ∴f(x)max=2. 答案:2 6.已知函數(shù)f(x)=Acos2(ωx+φ)+1的最大值為3,f(x)的圖象與y軸的交點(diǎn)坐標(biāo)為(0,2),其相鄰兩條對稱軸間的距離為2,則f(1)+f(2)+…+

11、f(2 016)=__________. 解析:f(x)=cos(2ωx+2φ)++1.由相鄰兩條對稱軸間的距離為2,知=2,得T=4=,∴ω=,由f(x)的最大值為3,得A=2.又f(x)的圖象過點(diǎn)(0,2),∴cos 2φ=0, ∴2φ=kπ+(k∈Z),即φ=+(k∈Z),又0<φ<,∴φ=,∴f(x)=cos+2=-sin+2.∴f(1)+f(2)+…+f(2 016)=(-1+2)+(0+2)+(1+2)+(0+2)+(-1+2)+…+(0+2)=22 016=4 032. 答案:4 032 7.已知函數(shù)f(x)=sin(3x+). (1)求f(x)的單調(diào)遞增區(qū)間; (2

12、)若α是第二象限角,f()=cos(α+)cos 2α,求cosα-sin α的值. 解析:(1)因?yàn)楹瘮?shù)y=sin x的單調(diào)遞增區(qū)間為[-+2kπ,+2kπ],k∈Z.由-+2kπ≤3x+≤+2kπ,k∈Z,得-+≤x≤+,k∈Z. 所以函數(shù)f(x)的單調(diào)遞增區(qū)間為[-+,+],k∈Z. (2)由已知,有sin(α+)=cos(α+)(cos2α-sin2α),所以sin αcos +cos αsin =(cos αcos -sin αsin )(cos2α-sin2α), 即sin α+cos α=(cos α-sin α)2(sin α+cos α). 當(dāng)sin α+cos α

13、=0時(shí),由α是第二象限角,知α=+2kπ,k∈Z.此時(shí),cos α-sin α=-. 當(dāng)sin α+cos α≠0時(shí),有(cos α-sin α)2=. 由α是第二象限角,知cos α-sin α<0, 此時(shí)cos α-sin α=-. 綜上所述,cos α-sinα=-或-. 8.(20xx三湘名校聯(lián)考)已知函數(shù)f(x)=sin ωx-sin(ω>0). (1)若f(x)在[0,π]上的值域?yàn)?,求ω的取值范圍? (2)若f(x)在上單調(diào),且f(0)+f=0,求ω的值. 解析:f(x)=sin ωx-sin =sin. (1)由x∈[0,π]?ωx-∈,又f(x)在[0,π]上的值域?yàn)?,即最小值為,最大值?,則由正弦函數(shù)的圖象可知≤ωπ-≤,得≤ω≤. ∴ω的取值范圍是. (2)因?yàn)閒(x)在上單調(diào),所以≥-0,則≥,即ω≤3,又ω>0,所以0<ω≤3, 由f(0)+f=0且f(x)在上單調(diào),得是f(x)圖象的對稱中心, ∴-=kπ,k∈Z?ω=6k+2,k∈Z, 又0<ω≤3,所以ω=2.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!