新課標高三數(shù)學一輪復習 第10篇 二項式定理學案 理

上傳人:仙*** 文檔編號:40482018 上傳時間:2021-11-16 格式:DOC 頁數(shù):7 大?。?67KB
收藏 版權申訴 舉報 下載
新課標高三數(shù)學一輪復習 第10篇 二項式定理學案 理_第1頁
第1頁 / 共7頁
新課標高三數(shù)學一輪復習 第10篇 二項式定理學案 理_第2頁
第2頁 / 共7頁
新課標高三數(shù)學一輪復習 第10篇 二項式定理學案 理_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新課標高三數(shù)學一輪復習 第10篇 二項式定理學案 理》由會員分享,可在線閱讀,更多相關《新課標高三數(shù)學一輪復習 第10篇 二項式定理學案 理(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 高考數(shù)學精品復習資料 2019.5 第五十八課時 二項式定理 課前預習案 考綱要求 1.能用計數(shù)原理證明二項式定理. 2.對于二項式定理,主要考查利用通項公式求展開式的特定項、求特定項的系數(shù)、利用賦值法求二項式展開式系數(shù)問題等. 基礎知識梳理 1.二項式定理:(a+b)n=_________________________________________這個公式所表示的定理叫二項式定理,右邊的多項式叫(a+b)n的二項展開式. 式中的____________叫二項展開式的通項,用Tr+1表示,即通項Tr+1=

2、___________. 注意:(1)它表示的是二項式的展開式的第項,而不是第項. (2)其中叫二項式展開式第項的二項式系數(shù),而二項式展開式第項的系數(shù)是字母冪前的常數(shù). 2.二項展開式形式上的特點 (1)項數(shù)為_______. (2)各項的次數(shù)都等于二項式的冪指數(shù)n,即a與b的指數(shù)的和為 . (3)字母a按 排列,從第一項開始,次數(shù)由n逐項減1直到 ;字母b按 排列,從第一項起,次數(shù)由零逐項增1直到 . (4)二項式的系數(shù)從,C,一直到 , . 3.二項式系數(shù)的性質 (1)對稱性:與首末兩端“等距離”的兩個

3、二項式系數(shù)相等.即. (2)增減性與最大值: 二項式系數(shù)C,當k<時,二項式系數(shù)逐增大.由對稱性知它的后半部分是逐漸減小的;當n是偶數(shù)時,中間一項______________取得最大值; 當n是奇數(shù)時,中間兩項__________,__________取得最大值. (3)各二項式系數(shù)和:C+C+C+…+C+…+C= ; C+C+C+…=C+C+C+…= . 4.二項展開式的系數(shù)的性質: 對于,; 預習自測 1.(20xx福建)(1+2x)5的展開式中,x2的系數(shù)等于( ). A.80 B.40 C.

4、20 D.10 2.若(1+)5=a+b(a,b為有理數(shù)),則a+b=( ). A.45 B.55 C.70 D.80 3.若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,則a0+a2+a4的值為( ). A.9 B.8 C.7 D.6 4.(20xx重慶)(1+3x)n(其中n∈N且n≥6)的展開式中x5與x6的系數(shù)相等,則n=( ). A.6 B.7 C.8 D.9 5.(20xx安徽)設(x-1)21=a0+a1x+a2x2+…+a2

5、1x21,則a10+a11=________. 課堂探究案 典型例題 考點1 二項展開式中的特定項或特定項的系數(shù) 【典例1】已知的展開式中,第6項為常數(shù)項. (1)求n; (2)求含x2的項的系數(shù); (3)求展開式中所有的有理項. 【變式1】(1) (20xx山東)若6展開式的常數(shù)項為60,則常數(shù)a的值為__ _. (2)已知(1+x+x2)的展開式中沒有常數(shù)項,n∈N*,且2≤n≤8,n= . 考點2 二項式中的系數(shù)與二項式系數(shù) 【典例2】(1) 在的二項展開式中,x11的系數(shù)是_____. (2)若展開式的二項式系數(shù)之和為64,則展開

6、式的常數(shù)項為( ) A.10 B.20 C.30 D.120 【變式2】設(x-1)4(x+2)8=a0x12+a1x11+…+a11x+a12,則a0+a2+…+a10+a12=____. 考點3 二項式定理中的賦值法的應用 【典例3】二項式(2x-3y)9的展開式中,求: (1)二項式系數(shù)之和; (2)各項系數(shù)之和; (3)所有奇數(shù)項系數(shù)之和. 【變式3】 已知(1-2x)7=a0+a1x+a2x2+…+a7x7.求: (1)a1+a2+…+a7; (2)a1+a

7、3+a5+a7; (3)a0+a2+a4+a6; (4)|a0|+|a1|+|a2|+…+|a7|. 考點4 二項式的和與積 【典例4】在(1+2x)3(1-x)4的展開式中含x項的系數(shù)為________. 【變式4】在x7的展開式中,x4的系數(shù)是________(用數(shù)字作答). 考點5 二項式展開式中的最值問題 【典例5】已知n的展開式中前三項的系數(shù)成等差數(shù)列. (1)求 n 的值; (2)展開式中二項式系數(shù)最大的項; (3)展開式中系數(shù)最大的項. 【變式5】(1)在的展開式中,只有第5項的二項式系數(shù)最

8、大,則展開式中常數(shù)項是( ) A.-7 B.7 C.-28 D.28 (2)已知二項式,(n∈N)的展開式中第5項的系數(shù)與第3項的系數(shù)的比是10:1, (1)求展開式中各項的系數(shù)和; (2)求展開式中含的項; (3)求展開式中二項式系數(shù)最大的項. 當堂檢測 1.二項式6的展開式中的常數(shù)項是(  ) A.20          B.-20 C.160 D.-160 2.若二項式n的展開式中第5項是常數(shù)項,則正整數(shù)n的值可能為(  ).

9、A.6 B.10 C.12 D.15 3.(1-t)3dt的展開式中x的系數(shù)是(  ) A.-1 B.1 C.-4 D.4 4.已知8的展開式中常數(shù)項為1120,其中實數(shù)a是常數(shù),則展開式中各項系數(shù)的和是(  ). A.28 B.38 C.1或38 D.1或28 5.設n的展開式的各項系數(shù)之和為M,二項式系數(shù)之和

10、為N,若M-N=240,則展開式中x的系數(shù)為(  ). A.-150 B.150 C.300 D.-300 6.2n展開式的第6項系數(shù)最大,則其常數(shù)項為(  ) A.120 B.252 C.210 D.45 課后拓展案 A組全員必做題 .(20xx新課標Ⅱ)已知的展開式中的系數(shù)為,則( ?。? A. B. C. D. .(20xx新課標Ⅰ)設為正整數(shù),展開式的二項式系數(shù)的最

11、大值為,展開式的二項式系數(shù)的最大值為,若,則( ?。? A.5 B.6 C.7 D.8 .(20xx大綱)的展開式中的系數(shù)是( ?。? A. B. C. D. .(20xx上海春)的二項展開式中的一項是( ?。? A. B. C. D. .(20xx遼寧)使(?。? A. B. C. D. .(20xx陜西)設函數(shù) 則當x>0時, 表達式的展開式中常數(shù)項為(  ) A.-20 B.20 C.-15 D.15 .(20xx年高考江西卷(理))(x2-)5展開式中的常數(shù)項為( ?。? A.80 B.-80 C.40 D.-40 B組提高選做題 1.(20xx上

12、海春季)36的所有正約數(shù)之和可按如下方法得到:因為, 所以36的所有正約數(shù)之和為 .參照上述方法,可求得2000的所有正約數(shù)之和為_______. 2.(20xx四川)二項式的展開式中,含的項的系數(shù)是_________.(用數(shù)字作答) 3.(20xx天津)在 的二項展開式中的常數(shù)項為______. 參考答案 預習自測 1.B 2.C 3.B 4.B 5.0 典型例題 【典例1】(1)10;(2);(3),; 【變式1】(1)4;(2)5 【典例2】(①)15;(②)B 【變式2】.8 【典例3】(1)512;(2);(3

13、) 【變式3】(1);(2);(3);(4) 【典例4】2 【變式4】84 【典例5】(1)8;(2);(3), 【變式5】(1).B (2).()1;();() 當堂檢測 1.【答案】D 【解析】二項式(2x-)6的展開式的通項是Tr+1=C(2x)6-rr=C26-r(-1)rx6-2r.令6-2r=0,得r=3,因此二項式(2x-)6的展開式中的常數(shù)項是C26-3(-1)3=-160. 2.【答案】C 【解析】Tr+1=C()n-rr=(-2)rC,當r=4時,=0,又n∈N*,∴n=12. 3. 【答案】B 【解析】 (1-t)3dt==+,故這個展開式中x的系

14、數(shù)是 -=1. 4.【答案】C 【解析】由題意知C(-a)4=1120,解得a=2,令x=1,得展開式各項系數(shù)和為(1-a)8=1或38. 5.【答案】B 【解析】由已知條件4n-2n=240,解得n=4, Tr+1=C(5x)4-rr=(-1)r54-rC, 令4-=1,得r=2,T3=150x. 6【答案】C 【解析】 根據(jù)二項式系數(shù)的性質,得2n=10,故二項式2n的展開式的通項公式是 Tr+1=C()10-rr=C,根據(jù)題意5-=0,解得r=6,故所求的常數(shù)項等于C=C=210. A組全員必做題 課后拓展案 1.D 2.B 3.D 4.C 5.B 6. A 7.C B組提高選做題 1.4836 2.10 3.15

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!