高考數(shù)學(xué) 文二輪復(fù)習(xí)教師用書: 第2部分 技法篇 Word版含答案

上傳人:仙*** 文檔編號(hào):42170066 上傳時(shí)間:2021-11-25 格式:DOC 頁(yè)數(shù):10 大?。?74.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
高考數(shù)學(xué) 文二輪復(fù)習(xí)教師用書: 第2部分 技法篇 Word版含答案_第1頁(yè)
第1頁(yè) / 共10頁(yè)
高考數(shù)學(xué) 文二輪復(fù)習(xí)教師用書: 第2部分 技法篇 Word版含答案_第2頁(yè)
第2頁(yè) / 共10頁(yè)
高考數(shù)學(xué) 文二輪復(fù)習(xí)教師用書: 第2部分 技法篇 Word版含答案_第3頁(yè)
第3頁(yè) / 共10頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué) 文二輪復(fù)習(xí)教師用書: 第2部分 技法篇 Word版含答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué) 文二輪復(fù)習(xí)教師用書: 第2部分 技法篇 Word版含答案(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 必考補(bǔ)充專題中的5個(gè)突破點(diǎn)在高考考查中較為簡(jiǎn)單,題型為選擇、填空題及選修“2選1”,屬送分題型,通過(guò)一輪復(fù)習(xí),大多數(shù)考生已能熟練掌握,為節(jié)省寶貴的二輪復(fù)習(xí)時(shí)間,迎合教師與考生的需求,本部分只簡(jiǎn)單提煉核心知識(shí),構(gòu)建知識(shí)體系,講解客觀題解法,其余以練為主. 建知識(shí)網(wǎng)絡(luò) 明內(nèi)在聯(lián)系 [高考點(diǎn)撥] 必考補(bǔ)充專題涉及的知識(shí)點(diǎn)比較集中,多為新增內(nèi)容,在高考中常以“五小一大”的形式呈現(xiàn),選考內(nèi)容是解答題“2選1”.本專題的考查也是高考中當(dāng)仁不讓的高頻考點(diǎn),考查考生應(yīng)用新知識(shí)解決問(wèn)題的能力和轉(zhuǎn)化與化歸能力等.綜合近年高考命題規(guī)律,本專題主要從“集合與常用邏輯用語(yǔ)”“不等式與線性規(guī)劃”“算

2、法初步、復(fù)數(shù)、推理與證明”“選修系列4”四大角度進(jìn)行精練,引領(lǐng)考生明確考情,高效備考. 技法篇:5招巧解客觀題,省時(shí)、省力得高分 [技法概述] 選擇題、填空題是高考必考的題型,共占有80分,因此,探討選擇題、填空題的特點(diǎn)及解法是非常重要和必要的.選擇題的特點(diǎn)是靈活多變、覆蓋面廣,突出的特點(diǎn)是答案就在給出的選項(xiàng)中.而填空題是一種只要求寫出結(jié)果,不要求寫出解答過(guò)程的客觀性試題,不設(shè)中間分,所以要求所填的是最簡(jiǎn)最完整的結(jié)果.解答選擇題、填空題時(shí),對(duì)正確性的要求比解答題更高、更嚴(yán)格.它們自身的特點(diǎn)決定選擇題及填空題會(huì)有一些獨(dú)到的解法. 解法1 直接法 直接法是直接從題設(shè)出發(fā),抓住命題的特征,利

3、用定義、性質(zhì)、定理、公式等,經(jīng)過(guò)變形、推理、計(jì)算、判斷得出結(jié)果.直接法是求解填空題的常用方法.在用直接法求解選擇題時(shí),可利用選項(xiàng)的暗示性作出判斷,同時(shí)應(yīng)注意:在計(jì)算和論證時(shí)盡量簡(jiǎn)化步驟,合理跳步,還要盡可能地利用一些常用的性質(zhì)、典型的結(jié)論,以提高解題速度. 【例1】(1)將函數(shù)y=sin圖象上的點(diǎn)P向左平移s(s>0)個(gè)單位長(zhǎng)度得到點(diǎn)P′.若P′位于函數(shù)y=sin 2x的圖象上,則(  ) A.t=,s的最小值為 B.t=,s的最小值為 C.t=,s的最小值為 D.t=,s的最小值為 (2)等比數(shù)列{an}的各項(xiàng)均為實(shí)數(shù),其前n項(xiàng)和為Sn.已知S3=,S6=,則a8=_______

4、_. 【導(dǎo)學(xué)號(hào):04024144】 [解題指導(dǎo)] (1)先求點(diǎn)P坐標(biāo),再求點(diǎn)P′的坐標(biāo),最后將點(diǎn)P′的坐標(biāo)代入y=sin 2x求s的最小值. (2)先求出等比數(shù)列的首項(xiàng)和公比,再利用等比數(shù)列的通項(xiàng)公式求a8即可. (1)A (2)32 [(1)因?yàn)辄c(diǎn)P在函數(shù)y=sin的圖象上,所以t=sin=sin=.所以P.將點(diǎn)P向左平移s(s>0)個(gè)單位長(zhǎng)度得P′. 因?yàn)镻′在函數(shù)y=sin 2x的圖象上,所以sin 2=,即cos 2s=,所以2s=2kπ+或2s=2kπ+π,即s=kπ+或s=kπ+(k∈Z),所以s的最小值為. (2)設(shè){an}的首項(xiàng)為a1,公比為q,則 解得 所以a

5、8=27=25=32.] [變式訓(xùn)練1] 為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表: 收入x(萬(wàn)元) 8.2 8.6 10.0 11.3 11.9 支出y(萬(wàn)元) 6.2 7.5 8.0 8.5 9.8 根據(jù)上表可得回歸直線方程=x+,其中=0.76,=-.據(jù)此估計(jì),該社區(qū)一戶年收入為15萬(wàn)元家庭的年支出為(  ) A.11.4萬(wàn)元      B.11.8萬(wàn)元 C.12.0萬(wàn)元 D.12.2萬(wàn)元 B [由題意知,==10, ==8, ∴=8-0.7610=0.4, ∴當(dāng)x=15時(shí),=0.7615+0.4=

6、11.8(萬(wàn)元).] 解法2 特例法 在解決選擇題和填空題時(shí),可以取一個(gè)(或一些)特殊情況(包括特殊數(shù)值、特殊位置、特殊函數(shù)、特殊點(diǎn)、特殊方程、特殊數(shù)列、特殊圖形等)來(lái)確定其結(jié)果,這種方法稱為特值法.特值法由于只需對(duì)特殊數(shù)值、特殊情形進(jìn)行檢驗(yàn),省去了推理論證、繁瑣演算的過(guò)程,提高了解題的速度.特值法是考試中解答選擇題和填空題時(shí)經(jīng)常用到的一種方法,應(yīng)用得當(dāng)可以起到“四兩撥千斤”的功效. 【例2】(1)設(shè)f(x)=ln x,0p C.p=rq (

7、2)如圖1,在棱柱的側(cè)棱A1A和B1B上各有一動(dòng)點(diǎn)P,Q滿足A1P=BQ,過(guò)P,Q,C三點(diǎn)的截面把棱柱分成兩部分,則其體積之比為(  ) 【導(dǎo)學(xué)號(hào):04024145】 圖1 A.3∶1      B.2∶1 C.4∶1 D.∶1 [解題指導(dǎo)] (1)從條件看這應(yīng)是涉及利用基本不等式比較函數(shù)值大小的問(wèn)題,若不等式在常規(guī)條件下成立,則在特殊情況下更能成立,所以不妨對(duì)a,b取特殊值處理,如a=1,b=e. (2)點(diǎn)P,Q在非特殊情況下體積較難計(jì)算.可將P,Q置于特殊位置,令P與A1重合,Q與B重合,再計(jì)算體積. (1)C (2)B [(1)根據(jù)條件,不妨取a=1,b=e,則p=

8、f()=ln=,q=f>f()=,r=(f(1)+f(e))=,在這種特例情況下滿足p=r<q, 所以選C. (2)令P與A1重合,Q與B重合,此時(shí)A1P=BQ=0,則VCAA1B=VA1ABC=V三棱柱ABCA1B1C1,故過(guò)P,Q,C三點(diǎn)的截面把棱柱分成的兩部分體積之比為2∶1.] [變式訓(xùn)練2] (1)如果a1,a2,…,a8為各項(xiàng)都大于零的等差數(shù)列,公差d≠0,那么(  ) A.a(chǎn)1a8>a4a5 B.a(chǎn)1a8<a4a5 C.a(chǎn)1+a8>a4+a5 D.a(chǎn)1a8=a4a5 (2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若a,b,c成等差數(shù)列,則=______

9、__. (1)B (2) [(1)取特殊數(shù)列1,2,3,4,5,6,7,8,顯然只有18<45成立. (2)令a=b=c,則A=C=60,cos A=cos C=. 從而=.] 解法3 數(shù)形結(jié)合法 數(shù)形結(jié)合法是指在處理數(shù)學(xué)問(wèn)題時(shí),能夠?qū)⒊橄蟮臄?shù)學(xué)語(yǔ)言與直觀的幾何圖形有機(jī)結(jié)合起來(lái)思考,促使抽象思維和形象思維有機(jī)結(jié)合,通過(guò)對(duì)規(guī)范圖形或示意圖形的觀察分析,化抽象為直觀,化直觀為精確,從而使問(wèn)題得到簡(jiǎn)捷解決的方法. 【例3】(1)(20xx合肥模擬)已知x,y滿足約束條件則z=-2x+y的最大值是(  ) 【導(dǎo)學(xué)號(hào):04024146】 A.-1 B.-2 C.-5 D.1 (2

10、)(20xx武漢模擬)函數(shù)f(x)=2sin xsin-x2的零點(diǎn)個(gè)數(shù)為________. [解題指導(dǎo)] (1)要確定目標(biāo)函數(shù)的最大值,需知道相應(yīng)的x,y的值,從約束條件中不可能解出對(duì)應(yīng)的x,y的值,所以只有通過(guò)圖解法作出約束條件的可行域,據(jù)可行域數(shù)形結(jié)合得出目標(biāo)函數(shù)的最大值. (2)函數(shù)的零點(diǎn)即對(duì)應(yīng)方程的根,但求對(duì)應(yīng)方程的根也比較困難,所以進(jìn)一步轉(zhuǎn)化為求兩函數(shù)的圖象的交點(diǎn),所以作出兩函數(shù)的圖象確定交點(diǎn)個(gè)數(shù)即可. (1)A (2)2 [(1)二元一次不等式組表示的平面區(qū)域?yàn)槿鐖D所示的△ABC內(nèi)部及其邊界,當(dāng)直線y=2x+z過(guò)A點(diǎn)時(shí)z最大,又A(1,1),因此z的最大值為-1. (2

11、)f(x)=2sin xcos x-x2=sin 2x-x2,函數(shù)f(x)的零點(diǎn)個(gè)數(shù)可轉(zhuǎn)化為函數(shù)y1=sin 2x與y2=x2圖象的交點(diǎn)個(gè)數(shù),在同一坐標(biāo)系中畫出y1=sin 2x與y2=x2的圖象如圖所示: 由圖可知兩函數(shù)圖象有2個(gè)交點(diǎn),則f(x)的零點(diǎn)個(gè)數(shù)為2.] [變式訓(xùn)練3] (1)(20xx鄭州模擬)方程xlg(x+2)=1的實(shí)數(shù)根的個(gè)數(shù)為(  ) A.1 B.2 C.0 D.不確定 (2)已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[0,2]上單調(diào)遞增,在區(qū)間(2,+∞)上單調(diào)遞減,且滿足f(-3)=f(1)=0,則不等式x3f(x)<0的解集為________. (1

12、)B (2)(-3,-1)∪(0,1)∪(3,+∞) [(1)方程xlg(x+2)=1?lg(x+2)=,在同一坐標(biāo)系中畫出函數(shù)y=lg(x+2)與y=的圖象,可得兩函數(shù)圖象有兩個(gè)交點(diǎn),故所求方程有兩個(gè)不同的實(shí)數(shù)根. (2)由題意可畫出y=f(x)的草圖,如圖. ①x>0,f(x)<0時(shí),x∈(0,1)∪(3,+∞); ②x<0,f(x)>0時(shí),x∈(-3,-1). 故不等式x3f(x)<0的解集為(-3,-1)∪(0,1)∪(3,+∞).] 解法4 排除法 排除法就是充分運(yùn)用選擇題中單選題的特征,即有且只有一個(gè)正確選項(xiàng)這一信息,從選項(xiàng)入手,根據(jù)題設(shè)條件與各選項(xiàng)的關(guān)系,通過(guò)

13、分析、推理、計(jì)算、判斷,對(duì)選項(xiàng)進(jìn)行篩選,將其中與題設(shè)相矛盾的干擾項(xiàng)逐一排除,從而獲得正確結(jié)論的方法.使用該法的前提是“答案唯一”,即四個(gè)選項(xiàng)中有且只有一個(gè)答案正確.排除法適用于定性型或不宜直接求解的選擇題,當(dāng)題目中的條件多于一個(gè)時(shí),先根據(jù)某些條件,在選項(xiàng)中找到明顯與之矛盾的予以否定,再根據(jù)另一些條件,在剩余的選項(xiàng)內(nèi)找出矛盾,這樣逐步篩選,直至得出正確的答案. 【例4】(1)(20xx北師大附中模擬)函數(shù)y=的圖象大致為(  ) 【導(dǎo)學(xué)號(hào):04024147】    A         B    C         D (2)設(shè)x∈R,定義符號(hào)函數(shù)sgn x

14、=則(  ) A.|x|=x|sgn x| B.|x|=xsgn|x| C.|x|=|x|sgn x D.|x|=xsgn x [解題指導(dǎo)] (1)根據(jù)函數(shù)的奇偶性和x→+∞時(shí)函數(shù)值的正負(fù),以及x→0且x>0時(shí)函數(shù)值的正負(fù),排除可得答案. (2)可驗(yàn)證當(dāng)x<0時(shí),等式成立的情況. (1)D (2)D [(1)函數(shù)y=cos 6x為偶函數(shù),函數(shù)y=2x-2-x為奇函數(shù),故原函數(shù)為奇函數(shù),排除A. 又函數(shù)y=2x-2-x為增函數(shù),當(dāng)x→+∞時(shí),2x-2-x→+∞且|cos 6x|≤1,∴y=→0(x→+∞),排除C. ∵y==為奇函數(shù),不妨考慮x>0時(shí)函數(shù)值的情況,當(dāng)x→0時(shí),4

15、x→1,4x-1→0,2x→1,cos 6x→1, ∴y→+∞,故排除B,綜上知選D. (2)當(dāng)x<0時(shí),|x|=-x,x|sgn x|=x,xsgn|x|=x,|x|sgn x=(-x)(-1)=x,排除A,B,C,故選D.] [變式訓(xùn)練4] (1)函數(shù)f(x)=cos x(-π≤x≤π且x≠0)的圖象可能為(  ) (2)設(shè){an}是等差數(shù)列,下列結(jié)論中正確的是(  ) A.若a1+a2>0,則a2+a3>0 B.若a1+a3<0,則a1+a2<0 C.若0 D.若a1<0,則(a2-a1)(a2-a3)>0 (1)D (2)C [(1)函數(shù)f

16、(x)=cos x(-π≤x≤π且x≠0)為奇函數(shù),排除選項(xiàng)A,B;當(dāng)x=π時(shí),f(x)=cos π=-π<0,排除選項(xiàng)C,故選D. (2)設(shè)等差數(shù)列{an}的公差為d,若a1+a2>0,a2+a3=a1+d+a2+d=(a1+a2)+2d,由于d正負(fù)不確定,因而a2+a3符號(hào)不確定,故選項(xiàng)A錯(cuò);若a1+a3<0,a1+a2=a1+a3-d=(a1+a3)-d,由于d正負(fù)不確定,因而a1+a2符號(hào)不確定,故選項(xiàng)B錯(cuò);若00,d>0,a2>0,a3>0,∴a-a1a3=(a1+d)2-a1(a1+2d)=d2>0,∴a2>,故選項(xiàng)C正確;若a1<0,則(a2-a1)(a

17、2-a3)=d(-d)=-d2≤0,故選項(xiàng)D錯(cuò).] 解法5 構(gòu)造法 用構(gòu)造法解客觀題的關(guān)鍵是利用已知條件和結(jié)論的特殊性構(gòu)造出新的數(shù)學(xué)模型,從而簡(jiǎn)化推理與計(jì)算過(guò)程,使較復(fù)雜的數(shù)學(xué)問(wèn)題得到解決,它需要對(duì)基礎(chǔ)知識(shí)和基本方法進(jìn)行積累,需要從一般的方法原理中進(jìn)行提煉概括,積極聯(lián)想,橫向類比,從曾經(jīng)遇到的類似問(wèn)題中尋找靈感,構(gòu)造出相應(yīng)的具體的數(shù)學(xué)模型,使問(wèn)題簡(jiǎn)化. 【例5】(1)(20xx福州一模)已知f(x)為定義在(0,+∞)上的可導(dǎo)函數(shù),且f(x)>xf′(x)恒成立,則不等式x2f-f(x)>0的解集為(  ) A.(0,1) B.(1,2) C.(1,+∞) D.(2,+∞) (

18、2)如圖2,已知球O的面上有四點(diǎn)A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=,則球O的體積等于________. 圖2 [解題指導(dǎo)] (1)構(gòu)造函數(shù)g(x)=,可證明函數(shù)g(x)在(0,+∞)上是減函數(shù),再利用 x2f-f(x)>0?>?g>g(x)求解. (2)以DA,AB,BC為棱長(zhǎng)構(gòu)造正方體,則球O是此正方體的外接球,從而球O的直徑是正方體的體對(duì)角線長(zhǎng). (1)C (2)π [(1)設(shè)g(x)=,則g′(x)=,又因?yàn)閒(x)>xf′(x),所以g′(x)=<0在(0,+∞)上恒成立,所以函數(shù)g(x)=為(0,+∞)上的減函數(shù),又因?yàn)閤2f-f(x)>0

19、?>?g>g(x),則有<x,解得x>1,故選C. (2)如圖,以DA,AB,BC為棱長(zhǎng)構(gòu)造正方體,設(shè)正方體的外接球球O的半徑為R,則正方體的體對(duì)角線長(zhǎng)即為球O的直徑,所以CD==2R, 所以R=,故球O的體積V==π.] [變式訓(xùn)練5] (1)(20xx蘭州高三診斷)已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為(  ) 【導(dǎo)學(xué)號(hào):04024148】 A.(-2,+∞)     B.(0,+∞) C.(1,+∞) D.(4,+∞) (2)已知a,b為不垂直的異面直線,α

20、是一個(gè)平面,則a,b在α上的射影有可能是:①兩條平行直線;②兩條互相垂直的直線;③同一條直線;④一條直線及其外一點(diǎn). 在上面的結(jié)論中,正確結(jié)論的序號(hào)是________(寫出所有正確結(jié)論的序號(hào)). (1)B (2)①②④ [(1)因?yàn)閒(x+2)為偶函數(shù), 所以f(x+2)的圖象關(guān)于x=0對(duì)稱, 所以f(x)的圖象關(guān)于x=2對(duì)稱, 所以f(4)=f(0)=1, 設(shè)g(x)=(x∈R), 則g′(x)= =, 又因?yàn)閒′(x)<f(x), 所以g′(x)<0(x∈R), 所以函數(shù)g(x)在定義域上單調(diào)遞減, 因?yàn)閒(x)<ex?g(x)=<1, 而g(0)==1, 所以f(x)<ex?g(x)<g(0), 所以x>0,故選B. (2)用正方體ABCDA1B1C1D1實(shí)例說(shuō)明A1D與BC1在平面ABCD上的射影互相平行,AB1與BC1在平面ABCD上的射影互相垂直,BC1與DD1在平面ABCD上的射影是一條直線及其外一點(diǎn).故正確的結(jié)論為①②④.] 客觀題常用的5種解法已初步掌握,在突破點(diǎn)17~19的訓(xùn)練中一展身手吧!

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!