《精校版數(shù)學人教A版選修44優(yōu)化練習:第二講 二 第二課時 雙曲線、拋物線的參數(shù)方程 Word版含解析》由會員分享,可在線閱讀,更多相關《精校版數(shù)學人教A版選修44優(yōu)化練習:第二講 二 第二課時 雙曲線、拋物線的參數(shù)方程 Word版含解析(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、最新資料最新資料最新資料最新資料最新資料
[課時作業(yè)]
[A組 基礎鞏固]
1.若點P(3,m)在以點F為焦點的拋物線(t為參數(shù))上,則|PF|等于( )
A.2 B.3
C.4 D.5
解析:拋物線方程化為普通方程為y2=4x,準線方程為x=-1,
所以|PF|為P(3,m)到準線x=-1的距離,即為4.故選C.
答案:C
2.方程(t為參數(shù))的圖形是( )
A.雙曲線左支 B.雙曲線右支
C.雙曲線上支 D.雙曲線下支
解析:∵x2-y2=e2t+2+e-2t-(e2t-2+e-2t)=4.且x=et+e-t≥2=2.
∴表示雙曲線的右支.
答案:B
2、
3.點P(1,0)到曲線(其中,參數(shù)t∈R)上的點的最短距離是( )
A.0 B.1
C. D.2
解析:方程表示拋物線y2=4x的參數(shù)方程,其中p=2,設點M(x,y)是拋物線上任意一點,則點M(x,y)到點P (1,0)的距離d===|x+1|≥1,所以最短距離為1,選B.
答案:B
4.若曲線C的參數(shù)方程為(θ為參數(shù)),則曲線C上的點的軌跡是( )
A.直線x+2y-2=0
B.以(2,0)為端點的射線
C.圓(x-1)2+y2=1
D.以(2,0)和(0,1)為端點的線段
解析:將曲線的參數(shù)方程化為普通方程得x+2y-2=0(0≤x≤2,0≤y≤1).
3、
答案:D
5.已知某條曲線的參數(shù)方程為(其中a是參數(shù)),則該曲線是( )
A.線段 B.圓
C.雙曲線 D.圓的一部分
解析:將所給參數(shù)方程的兩式平方后相減,
得x2-y2=1.
并且由|x|=≥1,得x≥1或x≤-1,
從而易知結(jié)果.
答案:C
6.已知動圓方程x2+y2-xsin 2θ+2·ysin=0(θ為參數(shù)),則圓心的軌跡方程是________.
解析:圓心軌跡的參數(shù)方程為
即消去參數(shù)得:
y2=1+2x(-≤x≤).
答案:y2=1+2x(-≤x≤)
7.已知拋物線C的參數(shù)方程為(t為參數(shù)).若斜率為1的直線經(jīng)過拋物線C的焦點,且與圓(
4、x-4)2+y2=r2(r>0)相切,則r=________.
解析:由得y2=8x,
拋物線C的焦點坐標為F(2,0),
直線方程為y=x-2,即x-y-2=0.
因為直線y=x-2與圓(x-4)2+y2=r2相切,
由題意得r==.
答案:
8.曲線(α為參數(shù))與曲線(β為參數(shù))的離心率分別為e1和e2,則e1+e2的最小值為________.
解析:曲線(α為參數(shù))的離心率
e1=,
曲線(β為參數(shù))的離心率e2=,
∴e1+e2=≥=2.
當且僅當a=b時取等號,所以最小值為2.
答案:2
9.已知拋物線(t為參數(shù),p>0)上的點M,N對應的參數(shù)值為t
5、1,t2,且t1+t2=0,t1t2=-p2,求M,N兩點間的距離.
解析:由題知M,N兩點的坐標分別為(2pt,2pt1),(2pt,2pt2),
所以|MN|=
=
=2p|t1-t2|
=2p
=4p2.
故M,N兩點間的距離為4p2.
10.如圖所示,O是直角坐標系的原點,A,B是拋物線y2=2px(p>0)上異于頂點的兩動點,且OA⊥OB,A,B在什么位置時△AOB的面積最?。孔钚≈凳嵌嗌??
解析:根據(jù)題意,設點A,B的坐標分別為A(2pt,2pt1),B(2pt,2pt2)(t1≠t2,且t1t2≠0),則
|OA|= =2p|t1|,
|OB|= =2p
6、|t2|.
因為OA⊥OB,所以·=0,
即2pt·2pt+2pt1·2pt2=0,所以t1·t2=-1.
又因△AOB的面積為:
S△AOB=|OA|·|OB|
=·2p|t1|·2p|t2|
=2p2|t1t2|
=2p2
=2p2≥2p2=4p2.
當且僅當t=,即t1=1,t2=-1或t1=-1,t2=1時,等號成立.
所以A,B的坐標分別為(2p,2p),(2p,-2p)或(2p,-2p),(2p,2p)時,△AOB的面積最小,最小值為4p2.
[B組 能力提升]
1.P為雙曲線(θ為參數(shù))
7、上任意一點,F(xiàn)1,F(xiàn)2為其兩個焦點,則△F1PF2重心的軌跡方程是( )
A.9x2-16y2=16(y≠0)
B.9x2+16y2=16(y≠0)
C.9x2-16y2=1(y≠0)
D.9x2+16y2=1(y≠0)
解析:由題意知a=4,b=3,可得c=5,
故F1(-5,0),F(xiàn)2(5,0),
設P(4sec θ,3tan θ),重心M(x,y),則
x==sec θ,y==tan θ.
從而有9x2-16y2=16 (y≠0).
答案:A
2.參數(shù)方程(0<θ<2π)表示( )
A.雙曲線的一支,這支過點
B.拋物線的一部分,這部分過點
C.雙曲線的一
8、支,這支過點
D.拋物線的一部分,這部分過點
解析:∵x2=(cos +sin )2=1+sin θ=2y,
∴方程x2=2y表示拋物線.
又∵x==,
且0<θ<2π,
∴0≤x≤ ,故選B.
答案:B
3.拋物線,關于直線x+y-2=0對稱的曲線的焦點坐標是________.
解析:拋物線的普通方程為y2=x,是以x軸為對稱軸,頂點在原點,開口向右的拋物線,當關于直線x+y-2=0對稱時,其頂點變?yōu)?2,2),對稱軸相應變?yōu)閤=2,且開口方向向下,所以焦點變?yōu)?,?
答案:
4.在直角坐標系xOy中,橢圓C的參數(shù)方程為(φ為參數(shù),a>b>0).在極坐標系(與直角坐
9、標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l與圓O的極坐標方程分別為ρsin=m(m為非零常數(shù))與ρ=b.若直線l經(jīng)過橢圓C的焦點,且與圓O相切,則橢圓C的離心率為________.
解析:先將參數(shù)方程與極坐標方程化為普通方程,再根據(jù)直線過焦點、直線與圓相切建立關于橢圓方程中a,b,c的等式,再結(jié)合a2=b2+c2求得離心率.
由已知可得橢圓標準方程為
+=1(a>b>0).
由ρsin=m可得ρsin θ+ρcos θ=m,即直線的普通方程為x+y=m,又圓的普通方程為x2+y2=b2,不妨設直線l經(jīng)過橢圓C的右焦點(c,0),可得c=m.又因為直線l
10、與圓O相切,所以=b,因此c=b,即c2=2(a2-c2),整理,得=,故橢圓C的離心率為e=.
答案:
5.如圖,自雙曲線x2-y2=1上一動點Q引直線l:x+y=2的垂線,垂足為N,求線段QN中點P的軌跡方程.
解析:設點Q的坐標為(sec φ,tan φ),(φ為參數(shù)).
∵QN⊥l,
∴可設直線QN的方程為x-y=λ.①
將點Q的坐標代入①得:λ=sec φ-tan φ.
所以線段QN的方程為x-y=sec φ-tan φ.②
又直線l的方程為x+y=2.③
由②③解得點N的橫坐標xN=.
設線段QN中點P的坐標為(x,y),
則x==,④
4×④-②
11、得
3x+y-2=2sec φ.⑤
4×④-3×②得
x+3y-2=2tan φ.⑥
⑤2-⑥2化簡即得所求的軌跡方程為
2x2-2y2-2x+2y-1=0.
6.已知曲線C的方程為
(1)當t是非零常數(shù),θ為參數(shù)時,C是什么曲線?
(2)當θ為不等于(k∈Z)的常數(shù),t為參數(shù)時,C是什么曲線?
(3)兩曲線有何共同特征?
解析:(1)將原參數(shù)方程記為①,將參數(shù)方程①化為
平方相加消去θ,得+=1.②
因為(et+e-t)2>(et-e-t)2>0,故方程②的曲線為橢圓,即C為橢圓.
(2)將方程①化為
平方相減消去t,得-=1.③
所以方程③的曲線為雙曲線,即C為雙曲線.
(3)在方程②中2-2=1,則c=1,
橢圓②的焦點坐標為(-1,0),(1,0),因此橢圓和雙曲線有共同的焦點.
最新精品資料