二輪復(fù)習(xí)數(shù)學(xué)理重點(diǎn)生通用版:專題跟蹤檢測三 導(dǎo)數(shù)的簡單應(yīng)用 Word版含解析
《二輪復(fù)習(xí)數(shù)學(xué)理重點(diǎn)生通用版:專題跟蹤檢測三 導(dǎo)數(shù)的簡單應(yīng)用 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《二輪復(fù)習(xí)數(shù)學(xué)理重點(diǎn)生通用版:專題跟蹤檢測三 導(dǎo)數(shù)的簡單應(yīng)用 Word版含解析(10頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、專題跟蹤檢測(三)專題跟蹤檢測(三)導(dǎo)數(shù)的簡單應(yīng)用導(dǎo)數(shù)的簡單應(yīng)用一、全練保分考法一、全練保分考法保大分保大分1函數(shù)函數(shù) f(x)excos x 的圖象在點(diǎn)的圖象在點(diǎn)(0,f(0)處的切線方程是處的切線方程是()Axy10Bxy10Cxy10Dxy10解析解析:選選 C依題意依題意,f(0)e0cos 01,因?yàn)橐驗(yàn)?f(x)excos xexsin x,所以所以 f(0)1,所以切線方程為所以切線方程為 y1x0,即,即 xy10,故選,故選 C.2已知函數(shù)已知函數(shù) f(x)x25x2ln x,則函數(shù),則函數(shù) f(x)的單調(diào)遞增區(qū)間是的單調(diào)遞增區(qū)間是()A.0,12 和和(1,)B(0,1)和
2、和(2,)C.0,12 和和(2,)D(1,2)解析:解析:選選 C函數(shù)函數(shù) f(x)x25x2ln x 的定義域是的定義域是(0,),且,且 f(x)2x52x2x25x2x x2 2x1 x.由由 f(x)0,解得,解得 0 x2,故函數(shù),故函數(shù) f(x)的單調(diào)遞增區(qū)間是的單調(diào)遞增區(qū)間是0,12 和和(2,)3(2018石家莊模擬石家莊模擬)已知已知 f(x)ln xx,其中,其中 e 為自然對數(shù)的底數(shù),則為自然對數(shù)的底數(shù),則()Af(2)f(e)f(3)Bf(3)f(e)f(2)Cf(e)f(2)f(3)Df(e)f(3)f(2)解析解析:選選 D由由 f(x)ln xx,得得 f(x)
3、1ln xx2,令令 f(x)0,解得解得 xe,當(dāng)當(dāng) x(0,e)時時,f(x)0,函數(shù)函數(shù) f(x)單調(diào)遞增單調(diào)遞增,當(dāng)當(dāng) x(e,)時時,f(x)0,函數(shù)函數(shù) f(x)單調(diào)遞減單調(diào)遞減,故故 f(x)在在 xe 處取得最大值處取得最大值 f(e),f(2)f(3)ln 22ln 333ln 22ln 36ln 8ln 960,f(2)f(3)f(2),故選,故選D.4(2019 屆高三屆高三廣州調(diào)研廣州調(diào)研)已知直線已知直線 ykx2 與曲線與曲線 yxln x 相切,則實(shí)數(shù)相切,則實(shí)數(shù) k 的值為的值為()Aln 2B1C1ln 2D1ln 2解析解析: 選選 D由由 yxln x 知
4、知 yln x1, 設(shè)切點(diǎn)為設(shè)切點(diǎn)為(x0, x0ln x0), 則切線方程為則切線方程為 yx0lnx0(ln x01)(xx0),因?yàn)榍芯€,因?yàn)榍芯€ ykx2 過定點(diǎn)過定點(diǎn)(0,2),所以,所以2x0ln x0(ln x01)(0 x0),解得,解得 x02,故,故 k1ln 2,選,選 D.5已知定義在已知定義在 R 上的可導(dǎo)函數(shù)上的可導(dǎo)函數(shù) f(x)的導(dǎo)函數(shù)為的導(dǎo)函數(shù)為 f(x),滿足,滿足 f(x)f(x),且,且 f(x3)為為偶函數(shù),偶函數(shù),f(6)1,則不等式,則不等式 f(x)ex的解集為的解集為()A(2,)B(0,)C(1,)D(4,)解析:解析:選選 B因?yàn)橐驗(yàn)?f(x
5、3)為偶函數(shù),為偶函數(shù),所以所以 f(3x)f(x3),因此因此 f(0)f(6)1.設(shè)設(shè) h(x)f x ex,則原不等式即,則原不等式即 h(x)h(0)又又 h(x)f x exf x ex ex 2f x f x ex,依題意依題意 f(x)f(x),故,故 h(x)0,因此函數(shù)因此函數(shù) h(x)在在 R 上是增函數(shù),上是增函數(shù),所以由所以由 h(x)h(0),得,得 x0.故選故選 B.6已知定義在已知定義在 R 上的函數(shù)上的函數(shù) yf(x)滿足滿足 f(x)f(x),當(dāng),當(dāng) x(0,2時,時,f(x)ln xaxa12 ,當(dāng),當(dāng) x2,0)時,時,f(x)的最小值為的最小值為 3,
6、則,則 a 的值等于的值等于()Ae2BeC2D1解析:解析:選選 A因?yàn)槎x在因?yàn)槎x在 R 上的函數(shù)上的函數(shù) yf(x)滿足滿足 f(x)f(x),所以所以 yf(x)為奇函數(shù),其圖象關(guān)于原點(diǎn)對稱,為奇函數(shù),其圖象關(guān)于原點(diǎn)對稱,因?yàn)楫?dāng)因?yàn)楫?dāng) x2,0)時,時,f(x)的最小值為的最小值為 3,所以當(dāng)所以當(dāng) x(0,2時,時,f(x)ln xaxa12 的最大值為的最大值為3.又又 f(x)1axx(0 x2),所以當(dāng)所以當(dāng) 0 x0;當(dāng)當(dāng)1ax2 時,時,f(x)0;所以函數(shù)所以函數(shù) f(x)ln xax 在區(qū)間在區(qū)間0,1a 上單調(diào)遞增,在區(qū)間上單調(diào)遞增,在區(qū)間1a,2上單調(diào)遞減,上單調(diào)
7、遞減,故故 f(x)maxf1a ln1aa1a3,解得,解得 ae2.7若函數(shù)若函數(shù) f(x)ln x12ax22x 存在單調(diào)遞減區(qū)間,則實(shí)數(shù)存在單調(diào)遞減區(qū)間,則實(shí)數(shù) a 的取值范圍是的取值范圍是_解析:解析:f(x)1xax21ax22xx,由題意知,由題意知 f(x)0,ax22x10 有實(shí)數(shù)解有實(shí)數(shù)解當(dāng)當(dāng) a0 時時,顯然滿足顯然滿足;當(dāng)當(dāng) a0,1a1.答案:答案:(1,)8已知函數(shù)已知函數(shù) f(x)exmx1 的圖象為曲線的圖象為曲線 C,若曲線,若曲線 C 存在與直線存在與直線 yex 垂直的切垂直的切線,則實(shí)數(shù)線,則實(shí)數(shù) m 的取值范圍是的取值范圍是_解析:解析:函數(shù)函數(shù) f(
8、x)的導(dǎo)數(shù)的導(dǎo)數(shù) f(x)exm,設(shè)切點(diǎn)為,設(shè)切點(diǎn)為(x0,ex0mx01),即切線斜率,即切線斜率 kex0m,若曲線,若曲線 C 存在與直線存在與直線 yex 垂直的切線,則滿足垂直的切線,則滿足(ex0m)e1,即即 ex0m1e有解,有解,即即 mex01e有解,有解,ex01e1e,m1e.答案:答案:1e,9已知已知 x0為函數(shù)為函數(shù) f(x)(ea)x3x 的極值點(diǎn),若的極值點(diǎn),若 x0e3,13e (e 為自然對數(shù)的底數(shù)為自然對數(shù)的底數(shù)),則實(shí)數(shù)則實(shí)數(shù) a 的取值范圍是的取值范圍是_解析解析: f(x)aeax3, 則則 f(x0)3aeax00, 由于由于 eax00, 則則
9、 a0,則,則 x0t3ln t,構(gòu)造函數(shù),構(gòu)造函數(shù) g(t)t3ln t(t0),g(t)13ln t1313(ln t1),當(dāng),當(dāng) 0t0,g(t)為增函數(shù),且為增函數(shù),且 g(t)0 恒成立,當(dāng)恒成立,當(dāng) t1e時,時,g(t)0,g(t)為為減函數(shù)減函數(shù),g(t)maxg1e 13e,且且 g(e)e3,因此當(dāng)因此當(dāng) x0e3,13e 時時,0te,即即 00,g 2 0,2m0,解得解得6m2.所以實(shí)數(shù)所以實(shí)數(shù) m 的取值范圍為的取值范圍為(6,2)11(2018成都模擬成都模擬)已知函數(shù)已知函數(shù) f(x)(ax1)ln xx22.(1)若若 a2,求曲線,求曲線 yf(x)在點(diǎn)在點(diǎn)
10、(1,f(1)處的切線處的切線 l 的方程;的方程;(2)設(shè)函數(shù)設(shè)函數(shù) g(x)f(x)有兩個極值點(diǎn)有兩個極值點(diǎn) x1,x2,其中其中 x1(0,e,求求 g(x1)g(x2)的最小值的最小值解:解:(1)當(dāng)當(dāng) a2 時,時,f(x)(2x1)ln xx22,則則 f(x)2ln xx1x2,f(1)2,f(1)12,切線切線 l 的方程為的方程為 y122(x1),即,即 4x2y30.(2)函數(shù)函數(shù) g(x)aln xx1xa,定義域?yàn)?,定義域?yàn)?0,),則則 g(x)1ax1x2x2ax1x2,令,令 g(x)0,得,得 x2ax10,其兩根為,其兩根為 x1,x2,且且 x1x2a,x
11、1x21,故故 x21x1,ax11x1.g(x1)g(x2)g(x1)g1x1aln x1x11x1aaln1x11x1x1a2x11x12alnx12x11x12x11x1ln x1,令令 h(x)2x1x 2x1x ln x.則則g(x1)g(x2)minh(x)min,又又 h(x)2 1x 1x ln xx2,當(dāng)當(dāng) x(0,1時,時,h(x)0,當(dāng)當(dāng) x(1,e時,時,h(x)0,即當(dāng)即當(dāng) x(0,e時,時,h(x)單調(diào)遞減,單調(diào)遞減,h(x)minh(e)4e,故故g(x1)g(x2)min4e.12(2018鄭州模擬鄭州模擬)已知函數(shù)已知函數(shù) f(x)ln xx,g(x)13mx
12、3mx(m0)(1)求曲線求曲線 yf(x)在點(diǎn)在點(diǎn)(1,f(1)處的切線方程;處的切線方程;(2)若對任意的若對任意的 x1(1,2),總存在,總存在 x2(1,2),使得,使得 f(x1)g(x2),求實(shí)數(shù),求實(shí)數(shù) m 的取值范圍的取值范圍解解:(1)易知切點(diǎn)為易知切點(diǎn)為(1,1),f(x)1x1,切線的斜率切線的斜率 kf(1)0,故切線方程為故切線方程為 y1.(2)設(shè)設(shè) f(x)在區(qū)間在區(qū)間(1,2)上的值域?yàn)樯系闹涤驗(yàn)?A,g(x)在區(qū)間在區(qū)間(1,2)上的值域?yàn)樯系闹涤驗(yàn)?B,則由題意可得,則由題意可得 AB.f(x)ln xx,f(x)1x11xx0 時,時,g(x)0 在在
13、x(1,2)上恒成立,上恒成立,則則 g(x)在在(1,2)上是增函數(shù),此時上是增函數(shù),此時 g(x)在區(qū)間在區(qū)間(1,2)上的值域上的值域 B 為為23m,23m,則則m0,23m1,23mln 22,解得解得 m32(ln 22)332ln 2.當(dāng)當(dāng) m0 時,時,g(x)0 在在 x(1,2)上恒成立,上恒成立,則則 g(x)在在(1,2)上是減函數(shù),此時上是減函數(shù),此時 g(x)在區(qū)間在區(qū)間(1,2)上的值域上的值域 B 為為23m,23m,則則m0 恒成立恒成立,函數(shù)函數(shù) f(x)在在(0,)上單調(diào)遞增上單調(diào)遞增,則函數(shù)則函數(shù) f(x)不存在兩個不同的零點(diǎn)不存在兩個不同的零點(diǎn)當(dāng)當(dāng)a0
14、 時時, 由由 f(x)0, 得得 x12a, 當(dāng)當(dāng) 0 x0, 函數(shù)函數(shù) f(x)單調(diào)遞增單調(diào)遞增, 當(dāng)當(dāng) x12a時時, f(x)0,即即 ln 2a1,所所以以 02a1e,即,即 0a0 對任意的對任意的 x1 恒成立,恒成立,則則m 的最大值為的最大值為()A2B3C4D5解析解析:選選 B法一法一:因?yàn)橐驗(yàn)?f(x)xxln x,且且 f(x)m(x1)0 對任意的對任意的 x1 恒成立恒成立,等等價于價于 mxxln xx1在在(1,)上恒成立,上恒成立,等價于等價于 m1)令令 g(x)xxln xx1(x1),所以,所以 g(x)x2ln x x1 2.易知易知 g(x)0
15、必有實(shí)根,設(shè)為必有實(shí)根,設(shè)為 x0,則則 x02ln x00,且,且 g(x)在在(1,x0)上單調(diào)遞減,在上單調(diào)遞減,在(x0,)上單調(diào)遞增,此時上單調(diào)遞增,此時 g(x)ming(x0)x0 x0ln x0 x01x0 x0 x02 x01x0, 因此因此 mx0, 令令 h(x)x2ln x, 可得可得 h(3)0,又又 mZ,故,故 m 的最大值為的最大值為 3.故選故選 B.法二:法二:f(x)m(x1)在在(1,)上恒成立,上恒成立,而而 f(x)2ln x,得,得 f(x)在在(0,e2)上單調(diào)遞減,在上單調(diào)遞減,在(e2,)上單調(diào)遞增,上單調(diào)遞增,由圖象可知由圖象可知,過點(diǎn)過點(diǎn)
16、(1,0)的直線的直線 ym(x1)必在必在 f(x)的圖象下方的圖象下方,設(shè)過點(diǎn)設(shè)過點(diǎn)(1,0)且與且與 f(x)的的圖象相切的直線的斜率為圖象相切的直線的斜率為 k,則,則 mk.此時設(shè)切點(diǎn)為此時設(shè)切點(diǎn)為(x0,x0 x0ln x0),則有則有 k2ln x0 x0 x0ln x0 x01,可得可得 x0ln x020,令,令 g(x)xln x2,顯然顯然 g(e)0,所以,所以 ex0e2,所以,所以 1ln x02,3k4,又,又 m0,aR 恒成立,則實(shí)恒成立,則實(shí)數(shù)數(shù)m 的最大值為的最大值為()A. eB2CeD3解析解析:選選 Bb(a2)2ln b(a1)2等價于點(diǎn)等價于點(diǎn)
17、P(b,ln b)與點(diǎn)與點(diǎn) Q(a2,a1)距離距離的平方,易知點(diǎn)的平方,易知點(diǎn) P,Q 分別在曲線分別在曲線 C:yln x 及直線及直線 l:yx1 上上令令 f(x)ln x,則,則 f(x)1x,令,令 f(x)1,得,得 x1,故與直線,故與直線 l 平行且與曲線平行且與曲線 C 相切相切的直線的直線 l與曲線與曲線 C 的切點(diǎn)為的切點(diǎn)為(1,0), 所以所以|PQ|min22 2, 所以所以 m2m2, 解得解得1m2,所以所以 m 的最大值為的最大值為 2.故選故選 B.5設(shè)函數(shù)設(shè)函數(shù) f(x)exax,g(x)ln(x3)4exa,其中,其中 e 為自然對數(shù)的底數(shù),若存在為自然
18、對數(shù)的底數(shù),若存在實(shí)數(shù)實(shí)數(shù) x0,使得,使得 f(x0)g(x0)2 成立,則實(shí)數(shù)成立,則實(shí)數(shù) a 的值為的值為()A2ln 2B1ln 2C1ln 2D2ln 2解析:解析:選選 D由已知得由已知得 f(x)g(x)exaxln(x3)4exa,設(shè)設(shè) h(x)exa4exa,u(x)xln(x3),所以所以 h(x)exa4exa2 exa4exa4,當(dāng)且僅當(dāng),當(dāng)且僅當(dāng) exa2 時等號成立時等號成立u(x)11x3x2x3(x3),令令 u(x)0,得,得 x2;令令 u(x)0,得得3x0,若直線,若直線 MNx 軸,則軸,則 M,N 兩點(diǎn)間的距離的最小值為兩點(diǎn)間的距離的最小值為()A1
19、B2C3D4解析:解析:選選 A設(shè)設(shè) h(x1)|MN|,由題意知,由題意知 h(x1)x2x1,x11,由由 MNx 軸可得軸可得 g(x2)f (x1),即即 x2ex1112(x11)21,所以所以 h(x1)x2x1ex1112(x11)2x11,h(x1)ex11x1,h(x1)ex111,因?yàn)橐驗(yàn)?h(x1)h(1)0,所以所以 h(x1)在在1,)上是增函數(shù),上是增函數(shù),所以所以 h(x1)h(1)0,因此因此 h(x1)在在1,)上是增函數(shù),所以上是增函數(shù),所以 h(x1)h(1)1,故選,故選 A.7若對任意的若對任意的 x1e,1,e 為自然對數(shù)的底數(shù),總存在唯一的為自然對
20、數(shù)的底數(shù),總存在唯一的 y1,1,使得,使得 ln xx1ay2ey成立,則實(shí)數(shù)成立,則實(shí)數(shù) a 的取值范圍為的取值范圍為()A.1e,eB.2e,eC.2e,D.2e,e1e解析:解析:選選 B設(shè)設(shè) f(x)ln xx1a,則則 f(x)1x11xx.因?yàn)橐驗(yàn)?x1e,1,所以,所以 f(x)0,f(x)在在1e,1上單調(diào)遞增,所以上單調(diào)遞增,所以 f(x)a1e,a.設(shè)設(shè) g(y)y2ey,y1,1,則則 g(y)y(y2)ey.由由 g(y)0,得,得1y0,得,得 0y1.所以函數(shù)所以函數(shù) g(y)在在1,0上單調(diào)遞減,在上單調(diào)遞減,在0,1上單調(diào)遞增,且上單調(diào)遞增,且 g(1)1eg
21、(1)e.對任意的對任意的 x1e,1,總存在唯一的,總存在唯一的 y1,1,使得,使得 ln xx1ay2ey成立,等價成立,等價于于 f(x)的值域是的值域是 g(y)的不含極值點(diǎn)的單值區(qū)間的子集,的不含極值點(diǎn)的單值區(qū)間的子集,故故a1e,a1e,e,所以,所以2e0 時時,f(x)f(x3)0;當(dāng)當(dāng) x(0,3)時,時,f(x)eln xx,其中,其中 e 是自然對數(shù)的底數(shù),且是自然對數(shù)的底數(shù),且 e2.72,則方程,則方程 6f(x)x0 在在9,9上的上的解的個數(shù)為解的個數(shù)為()A4B5C6D7解析:解析:選選 D依題意,當(dāng)依題意,當(dāng) x(0,3)時,時,f(x)e 1ln x x2
22、,令,令 f(x)0 得得 xe,故函,故函數(shù)數(shù) f(x)在區(qū)間在區(qū)間(0,e)上單調(diào)遞增上單調(diào)遞增,在區(qū)間在區(qū)間(e,3)上單調(diào)遞減上單調(diào)遞減,故在區(qū)間故在區(qū)間(0,3)上上,f(x)maxf(e)1.又函數(shù)又函數(shù) f(x)是定義在是定義在 R 上的奇函數(shù)上的奇函數(shù),且當(dāng)且當(dāng) x0 時時,f(x)f(x3)0,即即 f(x3)f(x),f(0)0.由由 6f(x)x0,得,得 f(x)x6.在同一坐標(biāo)系內(nèi)作出函數(shù)在同一坐標(biāo)系內(nèi)作出函數(shù) yf(x)與與 yx6在區(qū)間在區(qū)間9,9 上的上的圖象如圖所示圖象如圖所示由圖可知由圖可知,函數(shù)函數(shù) yf(x)與與 yx6的圖象有的圖象有 7 個交點(diǎn)個交點(diǎn),即方程即方程 6f(x)x0 的解的解的個數(shù)為的個數(shù)為 7.故選故選 D.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國際人力資源管理研討從明棋電腦探討課件
- 國文詩歌多媒體教學(xué)課件
- 古詩詞中愁的意象課件
- 十依財(cái)政經(jīng)費(fèi)所產(chǎn)生的弱勢族群課件
- 六條法律的新解釋發(fā)怒奸淫休妻課件
- 六書理論-大學(xué)古代漢語復(fù)習(xí)資料課件
- 7足太陽膀胱經(jīng)2課件
- 莫內(nèi)和他的朋友們一劇描寫印象派畫家的故事課件
- 海上貨物運(yùn)輸保險(xiǎn)講義ppt課件
- 資訊技術(shù)革命課件
- 北師大版必修二§213兩條直線的位置關(guān)系
- 專案采購計(jì)劃之準(zhǔn)則建立課件
- 常見惡性腫瘤的早期診斷和治療對策課件
- 干部管理職責(zé)與執(zhí)行技巧課件
- 將地方圖案插入此投影片課件