《高考數(shù)學(xué)江蘇專用理科專題復(fù)習(xí):專題6 數(shù)列 第37練 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)江蘇專用理科專題復(fù)習(xí):專題6 數(shù)列 第37練 Word版含解析(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
高考數(shù)學(xué)精品復(fù)習(xí)資料
2019.5
訓(xùn)練目標(biāo)
(1)求數(shù)列通項(xiàng)的常用方法;(2)等差、等比數(shù)列知識的深化應(yīng)用.
訓(xùn)練題型
(1)由數(shù)列的遞推公式求數(shù)列的通項(xiàng);(2)由數(shù)列的前n項(xiàng)和求通項(xiàng).
解題策略
求數(shù)列通項(xiàng)的常用方法:(1)公式法;(2)累加法;(3)累乘法;(4)構(gòu)造法.
1.在數(shù)列{an}中,a1=2,an+1=an+ln,則an=____________.
2.(20xx南京模擬)已知等比數(shù)列{an}為遞增數(shù)列,且a=a10,2(an+an+2)=5an+1,則數(shù)
2、列{an}的通項(xiàng)公式an=________.
3.在數(shù)列{an}中,a1=2,an+1=-2an+3,則數(shù)列{an}的通項(xiàng)公式an=________________.
4.(20xx南通、揚(yáng)州、泰州三模)在等差數(shù)列{an}中,若an+an+2=4n+6(n∈N*),則該數(shù)列的通項(xiàng)公式an=________.
5.(20xx常州模擬)已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足4(n+1)(Sn+1)=(n+2)2an,則數(shù)列{an}的通項(xiàng)公式an=____________.
6.?dāng)?shù)列{an}滿足a1=0,an+1=(n∈N*),則a20xx=________.
7.定義:稱為n個正數(shù)x1
3、,x2,…,xn的“平均倒數(shù)”,若正項(xiàng)數(shù)列{cn}的前n項(xiàng)的“平均倒數(shù)”為,則數(shù)列{cn}的通項(xiàng)公式cn=________.
8.已知數(shù)列{an}滿足:a1=1,an=
n=2,3,4,…,設(shè)bn=a+1,n=1,2,3,…,則數(shù)列{bn}的通項(xiàng)公式是________.
9.?dāng)?shù)列{an}中,a1=1,an=3an-1+3n+4(n∈N*,n≥2),若存在實(shí)數(shù)λ,使得數(shù)列為等差數(shù)列,則λ=____________.
10.已知數(shù)列{an}滿足a1=1,|an+1-an|=pn,n∈N*.
(1)若{an}是遞增數(shù)列,且a1,2a2,3a3成等差數(shù)列,求p的值;
(2)若p=,且{a2
4、n-1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項(xiàng)公式.
答案精析
1.2+lnn 2.2n 3.(-2)n-1+1 4.2n+1
5.(n+1)3
解析 當(dāng)n=1時,4(1+1)(a1+1)=(1+2)2a1,解得a1=8,當(dāng)n≥2時,由4(Sn+1)=,得4(Sn-1+1)=,兩式相減,得4an=-,即=,所以an=…a1=…8=(n+1)3,經(jīng)驗(yàn)證n=1時也符合,所以an=(n+1)3.
6.-
解析 由an+1=,
得a2==-,
a3===,
a4===0,
所以數(shù)列{an}的循環(huán)周期為3.
故a20xx=a3671+2=a2=-.
7.4n-
5、1
解析 由已知可得,數(shù)列{cn}的前n項(xiàng)和Sn=n(2n+1),所以數(shù)列{cn}為等差數(shù)列,首項(xiàng)c1=S1=3,c2=S2-S1=10-3=7,故公差d=c2-c1=7-3=4,得數(shù)列的通項(xiàng)公式為cn=c1+(n-1)4=4n-1.
8.bn=2n
解析 由題意得,對于任意的正整數(shù)n,
bn=a+1,所以bn+1=a+1,
又a+1=2(a+1)=2bn,
所以bn+1=2bn,又b1=a1+1=2,
所以{bn}是首項(xiàng)為2,公比為2的等比數(shù)列,所以bn=2n.
9.2
解析 設(shè)bn=,得an=3nbn-λ,代入已知得3nbn-λ=3(3n-1bn-1-λ)+3n+4,變形
6、為3n(bn-bn-1-1)=-2λ+4,這個式子對大于1的所有正整數(shù)n都成立.由于{bn}是等差數(shù)列,bn-bn-1是常數(shù),所以bn-bn-1-1=0,即-2λ+4=0,可得λ=2.
10.解 (1)因?yàn)閧an}是遞增數(shù)列,
所以an+1-an=|an+1-an|=pn.
而a1=1,因此a2=p+1,a3=p2+p+1.
又a1,2a2,3a3成等差數(shù)列,所以4a2=a1+3a3,
即3p2-p=0,解得p=或p=0.
當(dāng)p=0時,an+1=an,
這與{an}是遞增數(shù)列矛盾,故p=.
(2)由于{a2n-1}是遞增數(shù)列,因而a2n+1-a2n-1>0,
于是(a2n+1-a2n)+(a2n-a2n-1)>0.①
因?yàn)椋?,所以|a2n+1-a2n|<|a2n-a2n-1|.②
由①②知,a2n-a2n-1>0,
因此a2n-a2n-1=()2n-1=.③
因?yàn)閧a2n}是遞減數(shù)列,同理可得,a2n+1-a2n<0,
故a2n+1-a2n=-()2n=.④
由③④可知,an+1-an=.
于是an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=1+-+…+
=1+
=+.
故數(shù)列{an}的通項(xiàng)公式為an=+.