《高考數(shù)學 文二輪復習 課時鞏固過關(guān)練四 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學 文二輪復習 課時鞏固過關(guān)練四 Word版含解析(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
課時鞏固過關(guān)練(四) 函數(shù)的圖象與性質(zhì)
一、選擇題
1.(20xx北京高考)如圖,函數(shù)f(x)的圖象為折線ACB,則不等式f(x)≥log2(x+1)的解集是( )
A.{x|-1
2、析:由于函數(shù)f(x)=sinx+cos2x不是奇函數(shù),也不是偶函數(shù),故它的圖象不關(guān)于原點對稱,也不關(guān)于y軸對稱,故排除A、D.再根據(jù)當x=π時,函數(shù)的值等于1,故排除C,故選B.
答案:B
3.(20xx福建三明一中月考)函數(shù)y=,x∈(-π,0)∪(0,π)的圖象可能是下列中的( )
解析:因為f(-x)===f(x),所以函數(shù)y=,x∈(-π,0)∪(0,π)為偶函數(shù),圖象關(guān)于y軸對稱,故排除選項A,因為x>sinx在上恒成立,即>1在上恒成立,故排除選項B、D,故選C.
答案:C
4.(20xx河北衡水中學一調(diào))已知函數(shù)f(x)的圖象如圖所示,則f(x)的解析式可能是(
3、 )
A.f(x)=-x3 B.f(x)=+x3
C.f(x)=-x3 D.f(x)=+x3
解析:由圖可知,函數(shù)的漸近線為x=,則函數(shù)解析式中x≠,則排除C,D,又函數(shù)在,上單調(diào)遞減,而函數(shù)y=在,上單調(diào)遞減,y=-x3在R上單調(diào)遞減,則f(x)=-x3在,上單調(diào)遞減,選A.
答案:A
5.(20xx安徽安慶涼亭中學期中)已知函數(shù)f(x)=x2-,則函數(shù)y=f(x)的大致圖象為( )
解析:f(x)=x2-=
當x<0時,
f ′(x)=2x-=.令g(x)=2x3-1+ln(-x),由g′(x)=6x2+==0,得x=-,當x∈時,
g′(x)>0,當x∈時
4、,g′(x)<0.所以g(x)有極大值為g=23-1+ln=--ln6<0.又x2>0,所以f ′(x)的極大值小于0.所以函數(shù)f(x)在(-∞,0)上為減函數(shù).當x>0時,f ′(x)=2x-=,令h(x)=2x3-1+lnx,h′(x)=6x2+>0.所以h(x)在(0,+∞)上為增函數(shù),而h(1)=1>0,h=--ln2<0.又x2>0,所以函數(shù)f ′(x)在(0,+∞)上有一個零點x0,則函數(shù)f ′(x)在(0,x0)上,有f ′(x)f ′(x0)=0,f(x)在(0,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增.綜
5、上,函數(shù)f(x)的圖象為B中的形狀.故選B.
答案:B
二、填空題
6.(20xx江蘇徐州模擬)已知直線y=a與函數(shù)f(x)=2x及g(x)=32x的圖象分別相交于A,B兩點,則A,B兩點之間的距離為__________.
解析:由題意知A(log2a,a),B,
∴A,B之間的距離|AB|=|xA-xB|=log23.
答案:log23
7.(20xx安徽浮山中學一模)若函數(shù)f(x)=的圖象如下圖,則m的取值范圍是__________.
解析:∵函數(shù)的定義域為R,∴x2+m恒不等于零,由圖象知,當x>0時,f(x)>0,∴m>0,2-m>0?m<2,又在(0,+∞)上,函
6、數(shù)f(x)在x=x0(x0>1)處取得最大值,而f(x)=≤,∴x0=>1?m>1.綜上,1
7、,4)上單調(diào)遞增,則16
8、x)=則f+f=__________.
解析:由題意,f(x+4)=f(x),f(-x)=-f(x),則f+f=f+f
=f+f=f+f
=f+f=-f-f
=--sinπ=-+=.
答案:
三、解答題
11.(20xx吉林實驗中學期末)設(shè)函數(shù)f(x)=(a>0且a≠1)是定義域為R的奇函數(shù).
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx-x2)+f(x-1)<0對一切x∈R恒成立的實數(shù)k的取值范圍;
(3)若函數(shù)f(x)的圖象過點,是否存在正數(shù)m(m≠1),使函數(shù)g(x)=logm[a2x+a-2x-mf(x)]在[1,log23]上的最大值為0?若存在,求
9、出m的值;若不存在,請說明理由.
解:(1)f(x)是定義域為R的奇函數(shù).∴f(0)=0,∴t=2.
(2)由(1)得f(x)=ax-a-x,由f(1)>0得a->0,又a>0,∴a>1,由f(kx-x2)+f(x-1)<0得f(kx-x2)<-f(x-1),∵f(x)為奇函數(shù),∴f(kx-x2)1,∴f(x)=ax-a-x為R上的增函數(shù),∴kx-x2<1-x對一切x∈R恒成立,即x2-(k+1)x+1>0對一切x∈R恒成立,故Δ=(k+1)2-4<0,解得-3
10、,由a=2得g(x)=logm[a2x+a-2x-mf(x)]=logm[22x+2-2x-m(2x-2-x)]=logm[(2x-2-x)2-m(2x-2-x)+2],設(shè)s=2x-2-x,則(2x-2-x)2-m(2x-2-x)+2=s2-ms+2.∵函數(shù)g(x)=logm[a2x+a-2x-mf(x)]在[1,log23]上的最大值為0,
∴(ⅰ)若01,則函數(shù)h(s)=s2-ms+2>0,在上恒成立,且最大值為1,最小值大于0.①
??m=,
又此時=∈,又h(s)min=h<0,故g(x)無意義,所以m=應(yīng)舍去;②?
?m無解.
綜上所述,不存在正數(shù)m(m≠1),使函數(shù)g(x)=logm[a2x+a-2x-mf(x)]在[1,log23]上的最大值為0.