2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第1部分 重點(diǎn)強(qiáng)化專題 專題6 函數(shù)與導(dǎo)數(shù) 突破點(diǎn)14 函數(shù)的圖象和性質(zhì)學(xué)案 文
《2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第1部分 重點(diǎn)強(qiáng)化專題 專題6 函數(shù)與導(dǎo)數(shù) 突破點(diǎn)14 函數(shù)的圖象和性質(zhì)學(xué)案 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第1部分 重點(diǎn)強(qiáng)化專題 專題6 函數(shù)與導(dǎo)數(shù) 突破點(diǎn)14 函數(shù)的圖象和性質(zhì)學(xué)案 文(10頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 突破點(diǎn)14 函數(shù)的圖象和性質(zhì) [核心知識(shí)提煉] 提煉1 函數(shù)的奇偶性 (1)若函數(shù)y=f(x)為奇(偶)函數(shù),則f(-x)=-f(x)(f(-x)=f(x)). (2)奇函數(shù)y=f(x)若在x=0處有意義,則必有f(0)=0. (3)判斷函數(shù)的奇偶性需注意:一是判斷定義域是否關(guān)于原點(diǎn)對(duì)稱;二是若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn);三是判斷f(-x)=-f(x),還是f(-x)=f(x),有時(shí)需用其等價(jià)形式f(-x)±f(x)=0來判斷. (4)奇函數(shù)的圖象關(guān)于原點(diǎn)成中心對(duì)稱,偶函數(shù)的圖象關(guān)于y軸對(duì)稱. (5)奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上的單調(diào)性相同,偶函數(shù)在關(guān)于原點(diǎn)對(duì)
2、稱的區(qū)間上的單調(diào)性相反. 提煉2 函數(shù)的周期性 (1)若函數(shù)y=f(x)滿足f(a+x)=f(x-a)(a≠0),則函數(shù)y=f(x)是以2|a|為周期的周期性函數(shù). (2)若奇函數(shù)y=f(x)滿足f(a+x)=f(a-x)(a≠0),則函數(shù)y=f(x)是以4|a|為周期的周期性函數(shù). (3)若偶函數(shù)y=f(x)滿足f(a+x)=f(a-x)(a≠0),則函數(shù)y=f(x)是以2|a|為周期的周期性函數(shù). (4)若f(a+x)=-f(x)(a≠0),則函數(shù)y=f(x)是以2|a|為周期的周期性函數(shù). (5)若y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是以
3、2|b-a|為周期的周期性函數(shù). 提煉3 函數(shù)的圖象 (1)由解析式確定函數(shù)圖象.此類問題往往需要化簡(jiǎn)函數(shù)解析式,利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、過定點(diǎn)等)判斷,常用排除法. (2)已知函數(shù)圖象確定相關(guān)函數(shù)的圖象.此類問題主要考查函數(shù)圖象的變換(如平移變換、對(duì)稱變換等),要注意函數(shù)y=f(x)與y=f(-x)、y=-f(x)、y=-f(-x)、y=f(|x|)、y=|f(x)|等的相互關(guān)系. (3)借助動(dòng)點(diǎn)探究函數(shù)圖象.解決此類問題可以根據(jù)已知條件求出函數(shù)解析式后再判斷函數(shù)的圖象;也可采用“以靜觀動(dòng)”,即將動(dòng)點(diǎn)處于某些特殊的位置處考察圖象的變化特征,從而作出選擇. [高考真題回訪]
4、 回訪1 函數(shù)的奇偶性與周期性 1.(2014·全國(guó)卷Ⅰ)設(shè)函數(shù)f(x),g(x)的定義域都為R,且f(x)是奇函數(shù),g(x)是偶函數(shù),則下列結(jié)論中正確的是( ) A.f(x)g(x)是偶函數(shù) B.|f(x)|g(x)是奇函數(shù) C.f(x)|g(x)|是奇函數(shù) D.|f(x)g(x)|是奇函數(shù) C [A:令h(x)=f(x)·g(x),則h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(huán)(x), ∴h(x)是奇函數(shù),A錯(cuò). B:令h(x)=|f(x)|g(x),則h(-x)=|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x)=h(x), ∴
5、h(x)是偶函數(shù),B. C:令h(x)=f(x)|g(x)|,則h(-x)=f(-x)|g(-x)| =-f(x)|g(x)|=-h(huán)(x), ∴h(x)是奇函數(shù),C正確. D:令h(x)=|f(x)·g(x)|,則h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x), ∴h(x)是偶函數(shù),D錯(cuò).] 2.(2017·全國(guó)卷Ⅱ)已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x∈(-∞,0)時(shí),f(x)=2x3+x2,則f(2)=________. 12 [法一:令x>0,則-x<0. ∴f(-x)=-2x3+x2. ∵函數(shù)f(x)是定義
6、在R上的奇函數(shù), ∴f(-x)=-f(x). ∴f(x)=2x3-x2(x>0). ∴f(2)=2×23-22=12. 法二:f(2)=-f(-2) =-[2×(-2)3+(-2)2]=12.] 回訪2 函數(shù)的圖象 3.(2015·全國(guó)卷Ⅰ)設(shè)函數(shù)y=f(x)的圖象與y=2x+a的圖象關(guān)于直線y=-x對(duì)稱,且f(-2)+f(-4)=1,則a=( ) A.-1 B.1 C.2 D.4 C [設(shè)(x,y)為y=f(x)圖象上任意一點(diǎn), 則(-y,-x)在y=2x+a的圖象上, 所以有-x=2-y+a, 從而有-y+a=log2(-x)(指數(shù)式與對(duì)數(shù)式的
7、互化), 所以y=a-log2(-x), 即f(x)=a-log2(-x), 所以f(-2)+f(-4)=(a-log22)+(a-log24)=(a-1)+(a-2)=1,解得a=2.故選C.] 4.(2017·全國(guó)卷Ⅰ)函數(shù)y=的部分圖象大致為( ) C [令f(x)=, ∵f(1)=>0,f(π)==0, ∴排除選項(xiàng)A,D. 由1-cos x≠0得x≠2kπ(k∈Z), 故函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱. 又∵f(-x)==-=-f(x), ∴f(x)為奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱,∴排除選項(xiàng)B. 故選C.] 回訪3 函數(shù)的單調(diào)性 5.(2017·全
8、國(guó)卷Ⅱ)函數(shù)f(x)=ln(x2-2x-8)的單調(diào)遞增區(qū)間是( ) A.(-∞,-2) B.(-∞,1) C.(1,+∞) D.(4,+∞) D [由x2-2x-8>0,得x>4或x<-2. 設(shè)t=x2-2x-8,則y=ln t為增函數(shù). 要求函數(shù)f(x)的單調(diào)遞增區(qū)間,即求函數(shù)t=x2-2x-8的單調(diào)遞增區(qū)間. ∵函數(shù)t=x2-2x-8的單調(diào)遞增區(qū)間為(4,+∞), ∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(4,+∞). 故選D.] 6.(2015·全國(guó)卷Ⅱ)設(shè)函數(shù)f(x)=ln(1+|x|)-,則使得f(x)>f(2x-1)成立的x的取值范圍是( ) A. B.∪(
9、1,+∞)
C.
D.∪
A [法一:∵f(-x)=ln(1+|-x|)-=f(x),
∴函數(shù)f(x)為偶函數(shù).
∵當(dāng)x≥0時(shí),f(x)=ln(1+x)-,
在(0,+∞)上y=ln(1+x)遞增,y=-也遞增,
根據(jù)單調(diào)性的性質(zhì)知,f(x)在(0,+∞)上單調(diào)遞增.
又∵f(x)為偶函數(shù),∴f(x)在(-∞,0)上單調(diào)遞減,∴f(x)>f(2x-1)?f(|x|)>f(|2x-1|)?|x|>|2x-1|?x2>(2x-1)2?3x2-4x+1<0? 10、 2-=ln 2-ln >0,
∴x=0不滿足f(x)>f(2x-1),故C錯(cuò)誤.
令x=2,此時(shí)f(x)=f(2)=ln 3-,f(2x-1)=f(3)=ln 4-.∵f(2)-f(3)=ln 3-ln 4-,
其中l(wèi)n 3 11、為( )
(2)(2016·全國(guó)卷Ⅱ)已知函數(shù)f(x)(x∈R)滿足f(x)=f(2-x),若函數(shù)y=|x2-2x-3|與y=f(x)圖象的交點(diǎn)為(x1,y1),(x2,y2),…,(xm,ym),則i=( )
A.0 B.m
C.2m D.4m
(1)D (2)B [(1)當(dāng)x→+∞時(shí),→0,1+x→+∞,y=1+x+→+∞,故排除選項(xiàng)B.
當(dāng)0<x<時(shí),y=1+x+>0,故排除選項(xiàng)A,C.
故選D.
(2)∵f(x)=f(2-x),∴函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱.
又y=|x2-2x-3|=|(x-1)2-4|的圖象關(guān)于直線x=1對(duì) 12、稱,∴兩函數(shù)圖象的交點(diǎn)關(guān)于直線x=1對(duì)稱.
當(dāng)m為偶數(shù)時(shí),i=2×=m;
當(dāng)m為奇數(shù)時(shí),i=2×+1=m.故選B.]
[方法指津]
函數(shù)圖象的判斷方法
1.根據(jù)函數(shù)的定義域判斷圖象的左右位置,根據(jù)函數(shù)的值域判斷圖象的上下位置.
2.根據(jù)函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì).
3.根據(jù)函數(shù)的奇偶性,判斷圖象的對(duì)稱性.
4.根據(jù)函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).
5.取特殊值代入,進(jìn)行檢驗(yàn).
[變式訓(xùn)練1] (1)(2016·濟(jì)南模擬)函數(shù)y=(-π≤x≤π)的大致圖象為( )
【導(dǎo)學(xué)號(hào):04024121】
A. B.
C. D.
(2)( 13、2017·東北三省四市聯(lián)考)對(duì)?x∈,23x≤logax+1恒成立,則實(shí)數(shù)a的取值范圍是( )
A. B.
C. D.
(1)A (2)C [(1)令f(x)=,則f(-x)==-=-f(x),即函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,排除選項(xiàng)C,D;
當(dāng)x=時(shí),f=>0,排除選項(xiàng)B.
故選A.
(2)不等式23x≤logax+1即為8x≤logax+1,若8x≤logax+1在上恒成立,則0<a<1,分別在同一坐標(biāo)系中畫出y=8x與y=logax+1的圖象如圖所示,
易知loga+1≥8,解得≤a<1,故選C.]
熱點(diǎn)題型2 函數(shù)性質(zhì)的綜合應(yīng)用
題型分析:函數(shù)性質(zhì)的綜合應(yīng)用是高考 14、的熱點(diǎn)內(nèi)容,解決此類問題時(shí),性質(zhì)的判斷是關(guān)鍵,應(yīng)用是難點(diǎn).
【例2】(1)(2017·全國(guó)卷Ⅰ)已知函數(shù)f(x)=ln x+ln(2-x),則( )
A.f(x)在(0,2)單調(diào)遞增
B.f(x)在(0,2)單調(diào)遞減
C.y=f(x)的圖象關(guān)于直線x=1對(duì)稱
D.y=f(x)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱
(2)已知函數(shù)f(x)是定義在R上的奇函數(shù),且對(duì)于任意x∈R,恒有f(x-1)=f(x+1)成立,當(dāng)x∈[-1,0]時(shí),f(x)=2x-1,則f(2 017)=________.
(1)C (2) [(1)f(x)的定義域?yàn)?0,2).
f(x)=ln x+ln(2-x 15、)=ln[x(2-x)]=ln(-x2+2x).
設(shè)u=-x2+2x,x∈(0,2),則u=-x2+2x在(0,1)上單調(diào)遞增,在(1,2)上單調(diào)遞減.
又y=ln u在其定義域上單調(diào)遞增,
∴f(x)=ln(-x2+2x)在(0,1)上單調(diào)遞增,在(1,2)上單調(diào)遞減.
∴選項(xiàng)A,B錯(cuò)誤.
∵f(x)=ln x+ln(2-x)=f(2-x),
∴f(x)的圖象關(guān)于直線x=1對(duì)稱,∴選項(xiàng)C正確.
∵f(2-x)+f(x)=[ln(2-x)+ln x]+[ln x+ln(2-x)]=2[ln x+ln(2-x)],不恒為0,
∴f(x)的圖象不關(guān)于點(diǎn)(1,0)對(duì)稱,∴選項(xiàng)D錯(cuò)誤. 16、
故選C.
(2)由f(x-1)=f(x+1)得f(x)的周期為2,
則f(2 017)=f(1)=-f(-1)=-(2-1-1)=.]
[方法指津]
函數(shù)性質(zhì)的綜合應(yīng)用類型
1.函數(shù)單調(diào)性與奇偶性的綜合.注意奇、偶函數(shù)圖象的對(duì)稱性,以及奇、偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性的關(guān)系.
2.周期性與奇偶性的綜合.此類問題多為求值問題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.
3.單調(diào)性、奇偶性與周期性的綜合.解決此類問題通常先利用周期性轉(zhuǎn)化自變量所在的區(qū)間,然后利用奇偶性和單調(diào)性求解.
[變式訓(xùn)練2] (1)(2016·長(zhǎng)春二模)已 17、知函數(shù)f(x)是定義在R上的奇函數(shù),且在[0,+∞)上是增函數(shù),則不等式<f(1)的解集為( )
【導(dǎo)學(xué)號(hào):04024122】
A. B.(0,e)
C. D.(e,+∞)
(2)已知函數(shù)y=f(x)是定義在R上的奇函數(shù),?x∈R,f(x-1)=f(x+1)成立,當(dāng)x∈(0,1)且x1≠x2時(shí),有<0.給出下列命題:
①f(1)=0;
②f(x)在[-2,2]上有5個(gè)零點(diǎn);
③點(diǎn)(2 014,0)是函數(shù)y=f(x)圖象的一個(gè)對(duì)稱中心;
④直線x=2 014是函數(shù)y=f(x)圖象的一條對(duì)稱軸.
則正確命題的序號(hào)是________.
【導(dǎo)學(xué)號(hào):04024123】
( 18、1)C (2)①②③ [(1)∵f(x)為R上的奇函數(shù),則f=f(-ln x)=-f(ln x),
∴==|f(ln x)|,即原不等式可化為|f(ln x)|<f(1),∴-f(1)<f(ln x)<f(1),即f(-1)<f(ln x)<f(1).又由已知可得f(x)在R上單調(diào)遞增,∴-1<ln x<1,
解得<x<e,故選C.
(2)令f(x-1)=f(x+1)中x=0,
得f(-1)=f(1).
∵f(-1)=-f(1),
∴2f(1)=0,
∴f(1)=0,
故①正確;
由f(x-1)=f(x+1)得f(x)=f(x+2),
∴f(x)是周期為2的周期函數(shù),
∴f(2)=f(0)=0,
又當(dāng)x∈(0,1)且x1≠x2時(shí),有<0,
∴函數(shù)在區(qū)間(0,1)上單調(diào)遞減,可作函數(shù)的簡(jiǎn)圖如圖:
由圖知②③正確,④不正確,∴正確命題的序號(hào)為①②③.]
10
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案