全國通用高考數(shù)學二輪復(fù)習 第一部分 微專題強化練 專題26 函數(shù)與方程的思想、分類討論的思想含解析

上傳人:沈*** 文檔編號:72286308 上傳時間:2022-04-08 格式:DOC 頁數(shù):17 大小:295KB
收藏 版權(quán)申訴 舉報 下載
全國通用高考數(shù)學二輪復(fù)習 第一部分 微專題強化練 專題26 函數(shù)與方程的思想、分類討論的思想含解析_第1頁
第1頁 / 共17頁
全國通用高考數(shù)學二輪復(fù)習 第一部分 微專題強化練 專題26 函數(shù)與方程的思想、分類討論的思想含解析_第2頁
第2頁 / 共17頁
全國通用高考數(shù)學二輪復(fù)習 第一部分 微專題強化練 專題26 函數(shù)與方程的思想、分類討論的思想含解析_第3頁
第3頁 / 共17頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《全國通用高考數(shù)學二輪復(fù)習 第一部分 微專題強化練 專題26 函數(shù)與方程的思想、分類討論的思想含解析》由會員分享,可在線閱讀,更多相關(guān)《全國通用高考數(shù)學二輪復(fù)習 第一部分 微專題強化練 專題26 函數(shù)與方程的思想、分類討論的思想含解析(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 高考數(shù)學精品復(fù)習資料 2019.5 【走向高考】(全國通用)20xx高考數(shù)學二輪復(fù)習 第一部分 微專題強化練 專題26 函數(shù)與方程的思想、分類討論的思想(含解析) 一、選擇題 1.(文)方程m+=x有解,則m的最大值為(  ) A.1         B.0 C.-1 D.-2 [答案] A [解析] m=x-,令t=≥0,則x=1-t2, ∴m=1-t2-t=-(t+)2+≤1,故選A. (理)已知對于任意的a∈[-1,1],函數(shù)f(x)=x2+(a-4)x+4-2a的值總大于0,則x的取值范圍是( 

2、 ) A.13 C.12 [答案] B [解析] 將f(x)=x2+(a-4)x+4-2a看作是a的一次函數(shù),記為g(a)=(x-2)a+x2-4x+4. 當a∈[-1,1]時恒有g(shù)(a)>0,只需滿足條件 即 解之得x<1或x>3. [方法點撥] 1.函數(shù)與方程的關(guān)系 函數(shù)與方程是兩個不同的概念,但它們之間有著密切的聯(lián)系,方程f(x)=0的解就是函數(shù)y=f(x)的圖象與x軸的交點的橫坐標,函數(shù)y=f(x)也可以看作二元方程f(x)-y=0,通過方程進行研究. 2.應(yīng)用函數(shù)與方程思想解決函數(shù)、方程、不等式問題,

3、是多元問題中的常見題型,常見的解題思路有以下兩種: (1)分離變量,構(gòu)造函數(shù),將不等式恒成立、方程求解等轉(zhuǎn)化為求函數(shù)的最值(或值域),然后求解. (2)換元,將問題轉(zhuǎn)化為一次不等式、二次不等式或二次方程,進而構(gòu)造函數(shù)加以解決. 2.(文)(20xx·哈三中二模)一只螞蟻從正方體ABCD-A1B1C1D1的頂點A處出發(fā),經(jīng)正方體的表面,按最短路線爬行到頂點C1處,則下列圖形中可以表示正方體及螞蟻最短爬行路線的正視圖的是(  ) A.(1)(2) B.(1)(3) C.(2)(4) D.(3)(4) [答案] C [解析] 爬行路線為時正視圖為(2);爬行路線是時,正視圖

4、為(4),故選C. [方法點撥] 若幾何圖形的位置不確定時,常常要對各種不同情況加以討論. (理)有四根長都為2的直鐵條,若再選兩根長都為a的直鐵條,使這六根鐵條端點處相連能夠焊接成一個三棱錐形的鐵架,則a的取值范圍是(  ) A.(0,+) B.(1,2) C.(-,+) D.(0,2) [答案] A [解析] 若構(gòu)成三棱錐有兩種情形. 一種情形是三條長為2的線段圍成三角形作為棱錐的底面,過BC的中點M作與BC垂直的平面α,在平面α內(nèi),以A為圓心AP=2為半徑畫圓,點P在此圓周上,且不在平面ABC內(nèi)時,構(gòu)成三棱錐P-ABC,此時PB=PC=a,易求得-

5、形如圖: AB=AC=BD=DC=2, AD=BC=a, 此時2>a, ∴02>-, 取兩者的并集得,0

6、式、法則的限制條件引起的分類討論,如等比數(shù)列前n項和公式、不等式的一些性質(zhì)、函數(shù)的單調(diào)性、根式的性質(zhì). (3)由數(shù)學運算引起的分類,如除數(shù)不為0,偶次方根的被開方數(shù)非負,對數(shù)函數(shù)的底數(shù)a>0且a≠1,指數(shù)運算中對底數(shù)的限制,不等式兩邊同乘以一個正數(shù)(負數(shù)),排列組合中的分類計數(shù). (4)由圖形的不確定性引起的討論,如圖形的類型、位置,角的終邊所在象限、點線面位置等,點斜式(斜截式)直線方程適用范圍,直線與圓錐曲線的位置關(guān)系. (5)由參數(shù)的變化引起的分類討論:含參數(shù)的問題(方程、不等式、函數(shù)等),由于參數(shù)的不同取值會導(dǎo)致結(jié)果不同或不同的參數(shù)求解、證明的方法不同等. (6)由實際問題的實

7、際意義引起的分類討論. 3.(文)圓錐曲線+=1的離心率e=,則a的值為(  ) A.-1 B. C.-1或 D.以上均不正確 [答案] C [解析] 因焦點在x軸上和y軸上的不同,離心率e關(guān)于a的表達式發(fā)生變化,故需分類.當焦點在x軸上時, e2==,解得a=; 當焦點在y軸上時, e2==,解得a=-1.故選C. (理)將1,2,3,4,5排成一列a1a2a3a4a5(如43215中,a1=4,a2=3,a3=2,a4=1,a5=5),則滿足a1a3,a3a5的排列個數(shù)是(  ) A.10 B.12 C.14 D.16 [答案] 

8、D [解析] ∵a3a1,a2>a3入手討論), (1)當a3=3時,a2,a4只能是4,5,共有A·A種; (2)當a3=2時,a2,a4可以為3,4,5,∵a51,則雙曲線-=1的離心率e

9、的取值范圍是(  ) A.(1,) B.(,) C.[,] D.(,) [答案] B [解析] e2=()2==1+(1+)2,因為當a>1時,0<<1,所以2

10、開口向下,以(3,)為頂點的拋物線. 當x>3時,f(x)是確定的常數(shù),圖象為直線. 二、填空題 6.如圖,正六邊形ABCDEF中,P是△CDE內(nèi)(包括邊界)的動點.設(shè)=α+β(α,β∈R),則α+β的取值范圍是________. [答案] [3,4] [解析] 建立如圖所示的直角坐標系,設(shè)正六邊形邊長為2,則C(2,0),A(-1,-),B(1,-),D(1,),E(-1,),F(xiàn)(-2,0),設(shè)P(x,y)可得=(x+1,y+),=(2,0),=(-1,),∵=α+β,∴則α+β==x+y+2,當點P在如圖陰影部分所示的平面區(qū)域內(nèi)時,可作平行直線系x+y+2=z,當直線過點

11、E或C時,α+β取得最小值,(α+β)最小值=×2+×0+2=3;當直線過點D時,α+β取得最大值,(α+β)最大值=×1+×+2=4,則α+β的取值范圍是[3,4]. [方法點撥] 和函數(shù)與方程思想密切關(guān)聯(lián)的知識點 (1)函數(shù)與不等式的相互轉(zhuǎn)化.對函數(shù)y=f(x),當y>0時,就化為不等式f(x)>0,借助于函數(shù)的圖象和性質(zhì)可解決有關(guān)問題,而研究函數(shù)的性質(zhì)也離不開不等式. (2)數(shù)列的通項與前n項和是自變量為正整數(shù)的函數(shù),用函數(shù)的觀點去處理數(shù)列問題十分重要. (3)解析幾何中的許多問題,例如直線與二次曲線的位置關(guān)系問題,需要通過解二元方程組才能解決.這都涉及二次方程與二次函數(shù)的有關(guān)理

12、論. (4)立體幾何中有關(guān)線段、角、面積、體積的計算,經(jīng)常需要運用列方程或建立函數(shù)關(guān)系的方法加以解決,引進空間向量后,立體幾何與函數(shù)的關(guān)系就更加密切. (5)(理)函數(shù)f(x)=(a+bx)n(n∈N*)與二項式定理密切相關(guān),利用這個函數(shù),用賦值法和比較系數(shù)法可以解決很多有關(guān)二項式定理的問題及求和問題. 7.(文)若關(guān)于x的方程cos2x-2cosx+m=0有實數(shù)根,則實數(shù)m的取值范圍是________. [分析] 將方程變形為m=-cos2x+2cosx,則當方程有實數(shù)根時,-cos2x+2cosx的取值范圍就是m的取值范圍. [答案]  [解析] 原方程可化為m=-cos2x+

13、2cosx. 令f(x)=-cos2x+2cosx, 則f(x)=-2cos2x+1+2cosx =-22+, 由于-1≤cosx≤1, 所以當cosx=時,f(x)取得最大值, 當cosx=-1時,f(x)取得最小值-3, 故函數(shù)f(x)的值域為, 即m∈. [方法點撥] 本題若令cosx=t,則可通過換元法將原方程化為關(guān)于t的一元二次方程,但求解過程將非常繁瑣,而通過分離參數(shù),引進函數(shù),便可通過函數(shù)的值域較為簡單地求得參數(shù)m的取值范圍. (理)如果方程cos2x-sinx+a=0在(0,]上有解,則a的取值范圍是________. [答案] (-1,1] [分析] 

14、可分離變量為a=-cos2x+sinx,轉(zhuǎn)化為確定的相關(guān)函數(shù)的值域. [解析] 解法1:把方程變?yōu)閍=-cos2x+sinx. 設(shè)f(x)=-cos2x+sinx(x∈(0,]). 顯然當且僅當a∈f(x)的值域時,a=f(x)有解. ∵f(x)=-(1-sin2x)+sinx=(sinx+)2-,且由x∈(0,]知,sinx∈(0,1]. ∴f(x)的值域為(-1,1], ∴a的取值范圍是(-1,1]. 解法2:令t=sinx,由x∈(0,]可得t∈(0,1]. 把原方程變?yōu)閠2+t-1-a=0, 依題意,該方程在(0,1]上有解, 設(shè)f(t)=t2+t-1-a. 其圖

15、象是開口向上的拋物線,對稱軸為x=-,在區(qū)間(0,1]的左側(cè),如下圖所示. 因此f(t)=0在(0,1]上有解, 當且僅當,即, ∴-1

16、距a的取值范圍為________. [答案] [-,0) [分析] 將直線與橢圓方程聯(lián)立消去y,得關(guān)于x的二次方程,則直線與橢圓在y軸左側(cè)部分交于A、B兩點,轉(zhuǎn)化為方程有兩個負根的問題. [解析] 設(shè)A(x1,y1),B(x2,y2),M(x0,y0),直線l與x軸的交點為N(a,0). 由得(3+4k2)x2+16kx+4=0.(*) 因為直線y=kx+2和橢圓+=1在y軸左側(cè)部分交于A,B兩點, 所以 解得k>. 因為M是線段AB的中點,所以 因為P(0,-2),M(x0,y0),N(a,0)三點共線, 所以=,所以=, 即-=2k+. 因為k>,所以2k+≥2

17、, 當且僅當k=時等號成立, 所以-≥2,則-≤a<0. 三、解答題 9.(文)設(shè)函數(shù)f(x)=lnx-p(x-1),p∈R. (1)當p=1時,求函數(shù)f(x)的單調(diào)區(qū)間; (2)設(shè)函數(shù)g(x)=xf(x)+p(2x2-x-1)對任意x≥1都有g(shù)(x)≤0成立,求p的取值范圍. [解析] (1)當p=1時,f(x)=lnx-x+1,其定義域為(0,+∞). 所以f ′(x)=-1. 由f ′(x)=-1≥0得0

18、-1), 得g′(x)=lnx+1+2px. 由(1)知,當p=1時,f(x)≤f(1)=0, 即不等式lnx≤x-1成立. ①當p≤-時,g′(x)=lnx+1+2px≤(x-1)+1+2px=(1+2p)x≤0,即g(x)在[1,+∞)上單調(diào)遞減,從而g(x)≤g(1)=0滿足題意; ②當-0,1+2px>0,從而g′(x)=lnx+1+2px>0,即g(x)在(1,-)上單調(diào)遞增,從而存在x0∈(1,-)使得g(x0)≥g(1)=0不滿足題意; ③當p≥0時,由x≥1知g(x)=xlnx+p(x2-1)≥0恒成立,此時不滿足題意.

19、綜上所述,實數(shù)p的取值范圍為p≤-. (理)已知函數(shù)f(x)=(a+1)lnx+ax2+1. (1)討論函數(shù)f(x)的單調(diào)性; (2)設(shè)a<-1,如果對任意x1、x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范圍. [解析] (1)f(x)的定義域為(0,+∞). f ′(x)=+2ax=. 當a≥0時,f ′(x)>0,故f(x)在(0,+∞)單調(diào)遞增; 當a≤-1時,f ′(x)<0,故f(x)在(0,+∞)單調(diào)遞減; 當-10;x∈時,f ′(x)<0.故f(x)在單調(diào)遞增,

20、在單調(diào)遞減. (2)不妨假設(shè)x1≥x2.而a<-1,由(1)知f(x)在(0,+∞)單調(diào)遞減,從而?x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|等價于?x1,x2∈(0,+∞),f(x2)+4x2≥f(x1)+4x1① 令g(x)=f(x)+4x,則g′(x)=+2ax+4. ①等價于g(x)在(0,+∞)單調(diào)遞減,即 +2ax+4≤0. 從而a≤==-2. 故a的取值范圍為(-∞,-2]. [方法點撥] 導(dǎo)數(shù)在近幾年來已逐漸成為高考命題中的壓軸題,導(dǎo)數(shù)作為研究函數(shù)性質(zhì)的工具,具備廣泛適用性,可以分析各種函數(shù),而且容易與參數(shù)結(jié)合命題,尤其在問題轉(zhuǎn)化、構(gòu)造

21、新函數(shù)解決問題等方面體現(xiàn)明顯.因此我們在平日訓練時要注意分類討論思想轉(zhuǎn)化與歸納思想,函數(shù)與方程思想等方面的訓練,加強對問題的分析,以及處理問題和解決問題的能力. 10.(文)(20xx·安徽文,16)設(shè)△ABC的內(nèi)角A、B、C所對邊的長分別是a、b、c,且b=3,c=1,△ABC的面積為,求cosA與a的值. [分析] 已知b、c和△ABC的面積易求sinA,由平方關(guān)系可求cosA,但要注意開方時符號的選取及討論,再結(jié)合余弦定理可求a的值. [解析] 由三角形面積公式,得S=×3×1·sinA=,∴sinA=, 因為sin2A+cos2A=1. 所以cosA=±=±=±. ①當co

22、sA=時,由余弦定理得 a2=b2+c2-2bccosA=32+12-2×1×3×=8, 所以a=2. ②當cosA=-時,由余弦定理得 a2=b2+c2-2bccosA=32+12-2×1×3×(-)=12, 所以a=2. (理)已知函數(shù)f(x)=sinxcosx-m(sinx+cosx). (1)若m=1,求函數(shù)f(x)的最值; (2)若函數(shù)f(x)在區(qū)間[,]上的最小值等于2,求實數(shù)m的值. [解析] (1)當m=1時,f(x)=sinxcosx-(sinx+cosx), 設(shè)sinx+cosx=t,則sinxcosx=, 所以f(x)=h(t)=t2-t- =(t

23、-1)2-1. 由于t=sinx+cosx=sin(x+), 所以-≤t≤. 于是當t=-時函數(shù)f(x)取得最大值+; 當t=1時函數(shù)f(x)取得最小值-1. (2)設(shè)sinx+cosx=t, 則sinxcosx=, 所以f(x)=g(t)=t2-mt- =(t-m)2-m2-, 又因為x∈[,], t=sinx+cosx=sin(x+), 所以1≤t≤. 當m<1時,g(t)在[1,]上單調(diào)遞增, 當t=1時g(t)取得最小值,得-m=2, 所以m=-2,符合題意; 當m>時,g(t)在[1,]上單調(diào)遞減, 當t=時,g(t)取得最小值,得-m=2, 所以m

24、=-,與m>矛盾; 當1≤m≤時,g(t)在t=m處取得最小值,得-m2-=2,所以m2=-5,無解. 綜上,當函數(shù)f(x)在區(qū)間[,]上的最小值等于2時,實數(shù)m的值等于-2. 11.(文)已知公差不為0的等差數(shù)列{an}的首項a1為a.(a∈R),設(shè)數(shù)列的前n項和為Sn且,,成等比數(shù)列. (1)求數(shù)列{an}的通項公式及Sn; (2)記An=+++…+,Bn=+++…+,當n≥2時,試比較An與Bn的大?。? [解析] 設(shè)等差數(shù)列{an}的公差為d,由()2=·,得(a1+d)2=a1(a1+3d). 因為d≠0,所以d=a1=a. 所以an=na,Sn=. (2)因為=(-

25、),所以 An=+++…+=(1-). 因為a2n-1=2n-1a,所以Bn=+++…+ =·=(1-), 由n≥2時,2n=C+C+…+C>n+1, 即1-<1-, 所以,當a>0時,AnBn. (理)已知f(x)=,數(shù)列{an}滿足a1=,an+1=f(an)(n∈N*), (1)求證:數(shù)列是等差數(shù)列; (2)記Sn(x)=++…+(x>0),求Sn(x). [分析] (1)找出an與an+1關(guān)系; (2)用錯位相減法求和. [解析] (1)由已知得an+1=, ∴==3+.∴-=3. ∴是首項為3,公差為3的等差數(shù)列. (2)由(1

26、)得=3+3(n-1)=3n, ∴Sn(x)=3x+6x2+9x3+…+3nxn. x=1時,Sn(1)=3+6+9+…+3n=; x≠1時,Sn(x)=3x+6x2+9x3+…+3nxn, xSn(x)=3x2+6x3+…+3(n-1)xn+3nxn+1, (1-x)Sn(x)=3x+3x2+…+3xn-3nxn+1, Sn(x)=. 綜上,當x=1時,Sn(1)=n(n+1), 當x≠1時,Sn(x)=. [方法點撥] 一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,均值定理、等比數(shù)列的求和公式等性質(zhì)、定理與公式在不同的條件下有不同的結(jié)論,或者在一定的限制條件下才成立,這

27、時要小心,應(yīng)根據(jù)題目條件確定是否進行分類討論. 12.(文)設(shè)函數(shù)f(x)=ex-ax-2. (1)求f(x)的單調(diào)區(qū)間; (2)若a=1,k為整數(shù),且當x>0時,(x-k)f ′(x)+x+1>0,求k的最大值. [分析] (1)求函數(shù)f(x)的單調(diào)區(qū)間,需判斷f ′(x)的正負,因為含參數(shù)a,故需分類討論;(2)分離參數(shù)k,將不含有參數(shù)的式子看作一個新函數(shù)g(x),將求k的最大值轉(zhuǎn)化為求g(x)的最值問題. [解析] (1)f(x)的定義域為(-∞,+∞),f ′(x)=ex-a. 若a≤0,則f ′(x)>0,所以f(x)在(-∞,+∞)上單調(diào)遞增. 若a>0,則當x∈(-

28、∞,lna)時,f ′(x)<0;當x∈(lna,+∞)時,f ′(x)>0, 所以,f(x)在(-∞,lna)上單調(diào)遞減,在(lna,+∞)上單調(diào)遞增. (2)由于a=1,所以(x-k)f ′(x)+x+1=(x-k)(ex-1)+x+1. 故當x>0時,(x-k)f ′(x)+x+1>0等價于 k<+x (x>0). ① 令g(x)=+x,則 g′(x)=+1=. 由(1)知,函數(shù)h(x)=ex-x-2在(0,+∞)上單調(diào)遞增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)上存在唯一的零點.故g′(x)在(0,+∞)存在唯一的零點.設(shè)此零點為α,則α∈(1,2).

29、 當x∈(0,α)時,g′(x)<0;當x∈(α,+∞)時,g′(x)>0.所以g(x)在(0,+∞)上的最小值為g(α).又由g′(α)=0,可得eα=α+2,所以g(α)=α+1∈(2,3). 由于①式等價于k

30、M. [解析] f′(x)=3x2-2kx+1. (1)當k=1時f′(x) =3x2-2x+1,Δ=4-12=-8<0, ∴f′(x)>0,f(x)在R上單調(diào)遞增.即f(x)的單調(diào)遞增區(qū)間為(-∞,+∞),f(x)沒有單調(diào)遞減區(qū)間. (2)當k<0時,f′(x)=3x2-2kx+1,其開口向上,對稱軸x= ,且過(0,1). (i)當Δ=4k2-12=4(k+)(k-)≤0,即-≤k<0時,f′(x)≥0,f(x) 在[k,-k]上單調(diào)遞增, 從而當x=k時,f(x)取得最小值 m=f(k)=k, 當x=-k時,f(x) 取得最大值M=f(-k)=-k3-k3-k=-2k3

31、-k. (ii)當Δ=4k2-12=4(k+)(k-)>0,即k<-時,令f′(x)=3x2-2kx+1=0 解得:x1=,x2=,注意到kk,從而k0, ∴f(x)的最小值m=f(k)=k, ∵f(x2)-f(-k)=x-kx+x2-(-2k3-k) =(x2+k)[(x2-k)2+k2+1]<0, ∴f(x)的最大值M

32、=f(-k)=-2k3-k. 綜上所述,當k<0時,f(x)的最小值m=f(k)=k,最大值M=f(-k)=-2k3-k. 13.(文)(20xx·北京西城區(qū)二模)設(shè)F1,F(xiàn)2分別為橢圓E:+=1(a>b>0)的左、右焦點,點A為橢圓E的左頂點,點B為橢圓E的上頂點,且|AB|=2. (1)若橢圓E的離心率為,求橢圓E的方程; (2)設(shè)P為橢圓E上一點,且在第一象限內(nèi),直線F2P與y軸相交于點Q,若以PQ為直徑的圓經(jīng)過點F1,證明:|OP|>. [解析] (1)設(shè)c=, 由題意得a2+b2=4,且=, 解得a=,b=1,c=, 所以橢圓E的方程為+y2=1. (2)證明:由題

33、意得a2+b2=4,所以橢圓E的方程為+=1,則F1(-c,0),F(xiàn)2(c,0),c==. 設(shè)P(x0,y0),由題意知x0≠±c, 則直線F1P的斜率kF1P=, 直線F2P的斜率kF2P=, 所以直線F2P的方程為y=(x-c), 當x=0時,y=,即點Q(0,), 所以直線F1Q的斜率為kF1Q=, 因為以PQ為直徑的圓經(jīng)過點F1, 所以PF1⊥F1Q, 所以kF1P×kF1Q=×=-1, 化簡得y=x-(2a2-4), ① 又因為P為橢圓E上一點,且在第一象限內(nèi), 所以+=1,x0>0,y0>0,?、? 聯(lián)立①②,解得x0=,y0=2-a2, 所以|OP|2=

34、x+y=(a2-2)2+2, 因為a2+b2=4<2a2,所以a2>2, 所以|OP|>. (理)(20xx·新課標Ⅱ理,20)已知橢圓C:9x2+y2=m2(m>0),直線l不過原點O且不平行于坐標軸,l與C有兩個交點A,B,線段AB的中點為M. (1)證明:直線OM的斜率與l的斜率的乘積為定值; (2)若l過點,延長線段OM與C交于點P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率;若不能,說明理由. [立意與點撥] 考查直線的斜率、橢圓方程與幾何性質(zhì)、直線與橢圓的位置關(guān)系.(1)問中涉及弦的中點坐標問題,故可以采取“點差法”或“韋達定理”兩種方法求解;(2)根據(jù)(1)

35、中結(jié)論,設(shè)直線OM方程并與橢圓方程聯(lián)立,求得M坐標,利用xP=2xM以及直線l過點(,m)列方程求k的值. [解析] (1)設(shè)直線l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).將y=kx+b代入9x2+y2=m2,得(k2+9)x2+2kbx+b2-m2=0,故xM==-,yM=kxM+b=.于是直線OM的斜率kOM==-,即kOM·k=-9.所以直線OM的斜率與l的斜率的乘積為定值. (2)四邊形OAPB能為平行四邊形. 因為直線l過點(,m),所以l不過原點且與C有兩個交點的充要條件是k>0,k≠3. 由(1)得OM的方程為y=-x.設(shè)點P的橫坐標為xP.由得x=,即xP= .將點(,m)的坐標代入直線l的方程得b=,因此xM=.四邊形OAPB為平行四邊形當且僅當線段AB與線段OP互相平分,即xP=2xM.于是=2×.解得k1=4-,k2=4+.因為ki>0,ki≠3,i=1,2,所以當l的斜率為4-或4+時,四邊形OAPB為平行四邊形.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!