《創(chuàng)新設(shè)計(jì)(全國(guó)通用)高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 數(shù)學(xué)思想方法(選用)第1講 函數(shù)與方程思想、數(shù)形結(jié)合思想課件 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《創(chuàng)新設(shè)計(jì)(全國(guó)通用)高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 數(shù)學(xué)思想方法(選用)第1講 函數(shù)與方程思想、數(shù)形結(jié)合思想課件 文(32頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第第1講講函數(shù)與方程思想、數(shù)形結(jié)合思想函數(shù)與方程思想、數(shù)形結(jié)合思想高考定位高考定位函數(shù)與方程的思想一般通過(guò)函數(shù)與導(dǎo)數(shù)、三角函數(shù)、數(shù)列、解析幾何等知識(shí)進(jìn)行考查;數(shù)形結(jié)合思想一般在選擇題、填空題中考查.1.函數(shù)與方程思想的含義(1)函數(shù)的思想,是用運(yùn)動(dòng)和變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,是對(duì)函數(shù)概念的本質(zhì)認(rèn)識(shí),建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖象和性質(zhì)去分析問(wèn)題、轉(zhuǎn)化問(wèn)題,從而使問(wèn)題獲得解決的思想方法.(2)方程的思想,就是分析數(shù)學(xué)問(wèn)題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過(guò)解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問(wèn)題,使問(wèn)題獲得解決的思想方法.2.函數(shù)與方程的思想在
2、解題中的應(yīng)用(1)函數(shù)與不等式的相互轉(zhuǎn)化,對(duì)于函數(shù)yf(x),當(dāng)y0時(shí),就轉(zhuǎn)化為不等式f(x)0,借助于函數(shù)的圖象和性質(zhì)可解決有關(guān)問(wèn)題,而研究函數(shù)的性質(zhì)也離不開不等式.(2)數(shù)列的通項(xiàng)與前n項(xiàng)和是自變量為正整數(shù)的函數(shù),用函數(shù)的觀點(diǎn)去處理數(shù)列問(wèn)題十分重要. (3)解析幾何中的許多問(wèn)題,需要通過(guò)解二元方程組才能解決,這都涉及二次方程與二次函數(shù)的有關(guān)理論.3.數(shù)形結(jié)合是一個(gè)數(shù)學(xué)思想方法,包含“以形助數(shù)”和“以數(shù)輔形”兩個(gè)方面,其應(yīng)用大致可以分為兩種情形:(1)借助形的生動(dòng)和直觀性來(lái)闡明數(shù)之間的聯(lián)系,即以形作為手段,數(shù)為目的,比如應(yīng)用函數(shù)的圖象來(lái)直觀地說(shuō)明函數(shù)的性質(zhì);(2)借助于數(shù)的精確性和規(guī)范嚴(yán)密性
3、來(lái)闡明形的某些屬性,即以數(shù)作為手段,形作為目的,如應(yīng)用曲線的方程來(lái)精確地闡明曲線的幾何性質(zhì).4.在運(yùn)用數(shù)形結(jié)合思想分析和解決問(wèn)題時(shí),要注意三點(diǎn):第一要徹底明白一些概念和運(yùn)算的幾何意義以及曲線的代數(shù)特征,對(duì)數(shù)學(xué)題目中的條件和結(jié)論既分析其幾何意義又分析其代數(shù)意義;第二是恰當(dāng)設(shè)參、合理用參,建立關(guān)系,由數(shù)思形,以形想數(shù),做好數(shù)形轉(zhuǎn)化;第三是正確確定參數(shù)的取值范圍.數(shù)學(xué)中的知識(shí),有的本身就可以看作是數(shù)形的結(jié)合.熱點(diǎn)一函數(shù)與方程思想的應(yīng)用微題型1不等式問(wèn)題中的函數(shù)(方程)法【例11】 (1)f(x)ax33x1對(duì)于x1,1,總有f(x)0成立,則a_.(2)設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和
4、偶函數(shù),當(dāng)x0時(shí),f(x)g(x)f(x)g(x)0,且g(3)0,則不等式f(x)g(x)0的解集是_.(2)設(shè)F(x)f(x)g(x),由于f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),得F(x)f(x)g(x)f(x)g(x)F(x),即F(x)在R上為奇函數(shù).又當(dāng)x0時(shí),F(xiàn)(x)f(x)g(x)f(x)g(x)0,所以x0時(shí),F(xiàn)(x)為增函數(shù).因?yàn)槠婧瘮?shù)在對(duì)稱區(qū)間上的單調(diào)性相同,所以x0時(shí),F(xiàn)(x)也是增函數(shù).因?yàn)镕(3)f(3)g(3)0F(3).所以,由圖可知F(x)0的解集是(,3)(0,3).答案(1)4(2)(,3)(0,3)探究提高(1)在解決不等式問(wèn)題時(shí),一種最重要
5、的思想方法就是構(gòu)造適當(dāng)?shù)暮瘮?shù),利用函數(shù)的圖象和性質(zhì)解決問(wèn)題;(2)函數(shù)f(x)0或f(x)0恒成立,一般可轉(zhuǎn)化為f(x)min0或f(x)max0;已知恒成立求參數(shù)范圍可先分離參數(shù),然后利用函數(shù)值域求解.微題型2數(shù)列問(wèn)題的函數(shù)(方程)法微題型3解析幾何問(wèn)題的方程(函數(shù))法探究提高解析幾何中的最值是高考的熱點(diǎn),在圓錐曲線的綜合問(wèn)題中經(jīng)常出現(xiàn),求解此類問(wèn)題的一般思路為在深刻認(rèn)識(shí)運(yùn)動(dòng)變化的過(guò)程之中,抓住函數(shù)關(guān)系,將目標(biāo)量表示為一個(gè)(或者多個(gè))變量的函數(shù),然后借助于函數(shù)最值的探求來(lái)使問(wèn)題得以解決.熱點(diǎn)二數(shù)形結(jié)合思想的應(yīng)用微題型1利用數(shù)形結(jié)合思想討論方程的根或函數(shù)零點(diǎn)解析(1)由f(x)|2x2|b有兩
6、個(gè)零點(diǎn),可得|2x2|b有兩個(gè)不等的實(shí)根,從而可得函數(shù)y|2x2|的圖象與函數(shù)yb的圖象有兩個(gè)交點(diǎn),如圖所示.結(jié)合函數(shù)的圖象,可得0b2,故填(0,2).(2)根據(jù)題意,函數(shù)yf(x)是周期為2的偶函數(shù)且0 x1時(shí),f(x)x3,答案(1)(0,2)(2)B探究提高用圖象法討論方程(特別是含參數(shù)的指數(shù)、對(duì)數(shù)、根式、三角等復(fù)雜方程)的解(或函數(shù)零點(diǎn))的個(gè)數(shù)是一種重要的思想方法,其基本思想是先把方程兩邊的代數(shù)式看作是兩個(gè)熟悉函數(shù)的表達(dá)式(不熟悉時(shí),需要作適當(dāng)變形轉(zhuǎn)化為兩個(gè)熟悉的函數(shù)),然后在同一坐標(biāo)系中作出兩個(gè)函數(shù)的圖象,圖象的交點(diǎn)個(gè)數(shù)即為方程解(或函數(shù)零點(diǎn))的個(gè)數(shù).微題型2利用數(shù)形結(jié)合思想解不等
7、式或求參數(shù)范圍探究提高求參數(shù)范圍或解不等式問(wèn)題經(jīng)常聯(lián)系函數(shù)的圖象,根據(jù)不等式中量的特點(diǎn),選擇適當(dāng)?shù)膬蓚€(gè)(或多個(gè))函數(shù),利用兩個(gè)函數(shù)圖象的上、下位置關(guān)系轉(zhuǎn)化數(shù)量關(guān)系來(lái)解決問(wèn)題,往往可以避免繁瑣的運(yùn)算,獲得簡(jiǎn)捷的解答.微題型3利用數(shù)形結(jié)合思想求最值探究提高破解圓錐曲線問(wèn)題的關(guān)鍵是畫出相應(yīng)的圖形,注意數(shù)形結(jié)合的相互滲透,并從相關(guān)的圖形中挖掘?qū)?yīng)的信息加以分析與研究.直線與圓錐曲線的位置關(guān)系的轉(zhuǎn)化有兩種,一種是通過(guò)數(shù)形結(jié)合建立相應(yīng)的關(guān)系式,另一種是通過(guò)代數(shù)形式轉(zhuǎn)化為二元二次方程組的解的問(wèn)題進(jìn)行討論.1.當(dāng)問(wèn)題中涉及一些變化的量時(shí),就需要建立這些變化的量之間的關(guān)系,通過(guò)變量之間的關(guān)系探究問(wèn)題的答案,這就
8、需要使用函數(shù)思想.2.借助有關(guān)函數(shù)的性質(zhì),一是用來(lái)解決有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問(wèn)題,二是在問(wèn)題的研究中,可以通過(guò)建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù)來(lái)求解.3.許多數(shù)學(xué)問(wèn)題中,一般都含有常量、變量或參數(shù),這些參變量中必有一個(gè)處于突出的主導(dǎo)地位,把這個(gè)參變量稱為主元,構(gòu)造出關(guān)于主元的方程,主元思想有利于回避多元的困擾,解方程的實(shí)質(zhì)就是分離參變量.4.在數(shù)學(xué)中函數(shù)的圖象、方程的曲線、不等式所表示的平面區(qū)域、向量的幾何意義、復(fù)數(shù)的幾何意義等都實(shí)現(xiàn)以形助數(shù)的途徑,當(dāng)試題中涉及這些問(wèn)題的數(shù)量關(guān)系時(shí),我們可以通過(guò)圖形分析這些數(shù)量關(guān)系,達(dá)到解題的目的.5.有些圖形問(wèn)題,單純從圖形上無(wú)法看出問(wèn)題的結(jié)論,這就要對(duì)圖形進(jìn)行數(shù)量上的分析,通過(guò)數(shù)的幫助達(dá)到解題的目的.6.利用數(shù)形結(jié)合解題,有時(shí)只需把圖象大致形狀畫出即可,不需要精確圖象.