高中數(shù)學(xué)第2輪總復(fù)習(xí) 專題4 第3課時(shí) 空間距離課件 文

上傳人:無*** 文檔編號:76981606 上傳時(shí)間:2022-04-19 格式:PPT 頁數(shù):31 大?。?98KB
收藏 版權(quán)申訴 舉報(bào) 下載
高中數(shù)學(xué)第2輪總復(fù)習(xí) 專題4 第3課時(shí) 空間距離課件 文_第1頁
第1頁 / 共31頁
高中數(shù)學(xué)第2輪總復(fù)習(xí) 專題4 第3課時(shí) 空間距離課件 文_第2頁
第2頁 / 共31頁
高中數(shù)學(xué)第2輪總復(fù)習(xí) 專題4 第3課時(shí) 空間距離課件 文_第3頁
第3頁 / 共31頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué)第2輪總復(fù)習(xí) 專題4 第3課時(shí) 空間距離課件 文》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)第2輪總復(fù)習(xí) 專題4 第3課時(shí) 空間距離課件 文(31頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、專 題 四專 題 四 121abMaPbabdMPMPd兩條異面直線間的距離定義:和兩條異面直線分別垂直相交的直線,叫做這兩條異面直線的公垂線;兩條異面直線的公垂線在這兩條異面直線間的線段的長度,叫做兩條異面直線間的距離方法:幾何法:根據(jù)異面直線的定義作出兩條異面直線的公垂線,然后求公垂線段的長向量法:設(shè)向量 與兩異面直線 、 都垂直,則兩異面直線 、 間的距離 就是在向量 方向上射影的絕值,即對nnn.n 2.12PMaPdMPMPd點(diǎn)到平面的距離定義:從平面外一點(diǎn)引一個平面的垂線,這點(diǎn)和垂足之間的距離叫做這個點(diǎn)到這個平面的距離方法:幾何法:直接根據(jù)定義確定出點(diǎn)在平面上的垂足,得到垂線段,進(jìn)

2、而求解向量法:平面 的法向量為 ,點(diǎn) 是平面 外一點(diǎn),點(diǎn)為平面 內(nèi)任意一點(diǎn),則點(diǎn) 到平面的距離 就是在向量 方向上射影的絕對值即,nnnn 1.32/lMPlldMPMPd直線與平面的距離定義:如果一條直線和一個平面平行,那么直線上各點(diǎn)到這個平面的距離相等,則這條直線上任意一點(diǎn)到平面的距離叫做這條直線和平面的距離方法:幾何法:轉(zhuǎn)化為點(diǎn)到平面的距離,然后利用求點(diǎn)面距離的幾何法求解向量法:平面直線 ,平面 的法向量為 ,點(diǎn)、,平面 與直線 間的距離 就是在向量 方向上射影的絕對值,即nnnn 1/4/2.a bMPbdMPMPd兩平行平面間的距離定義:和兩個平行平面同時(shí)垂直的直線,叫做這兩平行平面

3、的公垂線,它夾在兩個平行平面間的公垂線段的長叫做這兩個平行平面的距離方法:幾何法:轉(zhuǎn)化為直線到平面的距離或點(diǎn)到直線的距離,然后利用求點(diǎn)到平面的距離的幾何法求解向量法:平面,平面 的法向量為 ,點(diǎn)、,平面 與平面 的距離 就是在向量 方向上射影的絕對值,即nnnn142_OABCDABCDABCOAABCDOABOCD如圖,在四棱錐中,底面是邊長為 的菱形,底面,則點(diǎn) 到平面的距離為例1.考點(diǎn)考點(diǎn)1 點(diǎn)到平面的距離點(diǎn)到平面的距離./AAPCDPOPAAQOPQABOCDABOCD過 作于 ,連結(jié),過點(diǎn) 作于點(diǎn)因?yàn)槠矫?,所以點(diǎn) 和點(diǎn) 到平面的距解析:離相等BOCDAAPCDAQOPAQ首先將點(diǎn) 到

4、平面的距離轉(zhuǎn)化為求點(diǎn) 到平面的距離,如圖可分析作,再作,則可證明的長就是所求:解的距離2222.3 2222223.23APCDOAABCDOACDCDOAPAQOAPAQCDAQOPAQOCDAQAOCDOPODDPOAADDPBOOA APAPDPAQOPCD因?yàn)椋值酌?,所以,所以平面因?yàn)槠矫?,所以又因?yàn)椋云矫嫠跃€段的長就點(diǎn) 到平是點(diǎn) 到平面的距離因?yàn)椋娴木嚯x所以為,所以求點(diǎn)到平面的距離是立體幾何中的主要題型,因?yàn)榫€面、面面等距離常常轉(zhuǎn)化為求點(diǎn)到平面的距離,而求點(diǎn)到面的距離還可用等體【思維啟迪】積法求解/223.SABCDAD BCADCDCSDABCDCSDSCSADASABC

5、S如圖,在四棱錐中,且,平面平面,求點(diǎn) 到平變式題:面的距離分析: 由于ADBC,因此可將所求距離轉(zhuǎn)化為D到平面BCS的距離,再證明DS為所求223 12./RtAD BCBCBCSADBCSABCSDBCSCSDABCDADCDADCSDADSDAD BCBCDSCSDDSASASDSBCSDSABCSADSD因?yàn)椋移矫?,所以平面,從而點(diǎn) 到平面的距離等于點(diǎn) 到平面的距離因?yàn)槠矫嫫矫?,故平面,從而,由,得,又由知平面,從而為點(diǎn) 到平面的距離,因此在中,解析:1111111111902_ABCA B CBCAACBCAABCACDCAACACA BCCCA AB已 知 斜 三 棱 柱,在 底

6、 面上 的 射 影 恰 為的 中 點(diǎn), 且,平 面, 則直 線到 平 面的 距 離 為例 2.考點(diǎn)考點(diǎn)2 直線到平面的距離直線到平面的距離分析:求CC1到平面A1AB的距離即直線CC1上任一點(diǎn)到平面A1AB的距離,根據(jù)圖形特點(diǎn)與條件選擇求點(diǎn)C到平面A1AB的距離,則須找一個過點(diǎn)C且與平面AA1B1B垂直的平面,可取A1A的中點(diǎn)F,則可通過證明平面BCF平面AA1B1B,再作CHBF,則CH即為所求距離11111111111111111260.ACACAAC CAAACADACDACA ACA ACACABCACBCBCACBCAAC CBCA AAAFCFBFA ACAACF如圖,由,知四邊形

7、為菱形,故,又,且 為的中點(diǎn),知,即是等邊三角形又由平面,得,又,所以平面,所以,取的中點(diǎn) ,連結(jié),又是等邊三角形,則解析:,11111111./Rt2372 21.72 217.AABCFA ABBCFCCHBFHCHA ABC CA ABCA ABCHBCFBCCFBFBC CFCCA ABCHBF所以平面,從而平面平面過 作于 ,則平面,又平面,故所求距離為點(diǎn) 到平面的距離,也就是線段的長在中,到平面的距離為,所以即【思維啟迪】本題解答是將線面距離轉(zhuǎn)化為點(diǎn)面距離來求的,而作點(diǎn)到面的距離充分利用了等邊三角形的三線合一的垂直關(guān)系,通過證明線面垂直確定CH為所求距離11111111111111

8、1111111/.1/BDGB DBDGB DOGB DB DACB DA AACA AAB DA ACC因?yàn)槠矫?,所以上任意一點(diǎn)到平面的距離皆為所求以下求點(diǎn) 到平面的距離因?yàn)?,所以平面:解析:方?1111112ABCDA B C DGAABDGB D在 棱 長 為的 正 方 體 中 ,是變的 中 點(diǎn) ,式 題 :求到 平 面的 距 離 111111111111111111111111.11222 62.221132222 6.3.3B DGB DA ACCGB DA ACCGB DOGOHOGHOHGB DOHOGB DOOGS OOGOO AOS OOGOH OGOHBODHGB D 又

9、因?yàn)槠矫?,所以平面平面,且平面平面作?,則有平面,即是點(diǎn) 到平面的距到平面的距離等離在中,又,于所以即11111111111111111111/ /.12 23622 6.311442262 2 2.32336BDGB DBDGB DBGB DBGB DhBGB DVBGB DVDGBBSBDGGB DVDGBBhB D 因?yàn)槠矫妫陨先我庖稽c(diǎn)到平面的距離皆為所求以下求點(diǎn) 到平面的距離設(shè)點(diǎn) 到平面的距離為 ,將它視為三棱錐的高,則到平面的距離等由于,所以于即方法 :分析: 第(1)小題根據(jù)正四面體的性質(zhì)直接作出A在平面BCD上的射影O的位置,然后構(gòu)造直角三角形可求得;第(2)小題連結(jié)AB與

10、CD的中點(diǎn)可作出兩條異面直線的公垂線,進(jìn)而求解 ABCD1ABCDABCD12正 四 面 體的 棱 長 為 , 求 :到 平備 選 例 題 :面的 距 離 ;異 面 直 線、 之 間 的 距 離 .2233.33213AAOBCDOBOCDMAMOCODABACADOBOCODOBCDBDBCCDOBCDBOBE過 作平面于 ,連結(jié)并延長與相交于,連結(jié),因?yàn)椋运?是的外心又,所以 是的中心,所以解析: 222190361.33.2.6.3ABAOBAOABBOABECEEDACBCAEEBCDABDEABABCEABCDD 又,且,所以如圖,設(shè)的中點(diǎn)為 ,連結(jié)、因?yàn)?,所以同理,所以平面?/p>

11、以 到平面的距離是2222.319022312.2222.2CDFEFABEFCDEFEFABCDCECFFABCDDEFCEFECCF 設(shè)的中點(diǎn)為 ,連結(jié),則同理所以異面直線可證所以是異面直線、之間的距離因?yàn)?,所的距離是以,【思維啟迪】求兩條異面直線之間的距離一般在高考題中已經(jīng)作出它們的公垂線,或圖中很明顯可作出公垂線;求點(diǎn)到平面的距離關(guān)鍵是確定點(diǎn)在平面上的射影位置,常常要根據(jù)圖形的結(jié)構(gòu)特點(diǎn)、線與面的特殊位置關(guān)系來作 ()(14)2213求距離的一般步驟是:一作,二證,三計(jì)算即先作出表示距離的線段,再證明它就是所求的距離,然后再計(jì)算,其中第二步證明過程在解題中應(yīng)引起足夠的重視求空間距離的方法

12、可分為直接法、轉(zhuǎn)化法、向量法 直接法是直接作出垂線,再通過解三角形求出距離 轉(zhuǎn)化法是把面面距離轉(zhuǎn)化為線面距離,再把線面距離轉(zhuǎn)化為點(diǎn)面距離 等積法 等面積、等體積 是求距離 點(diǎn)到線、點(diǎn)到面 的常用方法,要注意靈活運(yùn)用 向量法是把距離求解轉(zhuǎn)化為向量運(yùn)算211 1023A. 1.(201 B.223C. D. 221)SABCDSABCDABCDS高為的四棱錐的底面是邊長為 的正方形,點(diǎn) , , , , 均在半徑為 的同一球面上,則底面的中心與頂點(diǎn)之間的距離為重慶卷112211121222.2OOOBO BBDOABCDOOOBOB如圖所示,設(shè)球心為 ,正方形的中心為,則,所以點(diǎn) 到平面的距離解析:

13、122221112222.022SABCDSABCDBABCDSSOSBSOO BSB 因?yàn)樗睦忮F的高為,可以想到四棱錐的頂點(diǎn) 是與平面平行且距離為的一個小圓的圓周上,同時(shí)這兩個小圓面與球心的距離均相等,因此它們是等圓周,故可取一個特殊點(diǎn)來解答,即過 作平面的垂線,與大圓的交點(diǎn)為 ,則就是所求易知,則21 23A. B.336C. 2.(2011) D 13lAAClCBBDlDABACBDDABC 已知直二面角,點(diǎn), 為垂足, 為垂足,若,則 到平面的距離等于國大綱卷全21lAAClCBBDlDABACBDDABCDABCh 由題意畫出圖形如圖,直二面角,點(diǎn),為垂足, 為垂足若,則 到平面的距離轉(zhuǎn)化為三棱錐的解:高為析,323.11113236.32BACDDABCADCDBCVVAC CD BDAC BhhC所以,由可知,所以

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!