車輛工程畢業(yè)設(shè)計(jì)論文液壓式四輪轉(zhuǎn)向系統(tǒng)設(shè)計(jì)【單獨(dú)論文不含圖】

上傳人:沈*** 文檔編號(hào):80419884 上傳時(shí)間:2022-04-25 格式:DOC 頁數(shù):46 大?。?25KB
收藏 版權(quán)申訴 舉報(bào) 下載
車輛工程畢業(yè)設(shè)計(jì)論文液壓式四輪轉(zhuǎn)向系統(tǒng)設(shè)計(jì)【單獨(dú)論文不含圖】_第1頁
第1頁 / 共46頁
車輛工程畢業(yè)設(shè)計(jì)論文液壓式四輪轉(zhuǎn)向系統(tǒng)設(shè)計(jì)【單獨(dú)論文不含圖】_第2頁
第2頁 / 共46頁
車輛工程畢業(yè)設(shè)計(jì)論文液壓式四輪轉(zhuǎn)向系統(tǒng)設(shè)計(jì)【單獨(dú)論文不含圖】_第3頁
第3頁 / 共46頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《車輛工程畢業(yè)設(shè)計(jì)論文液壓式四輪轉(zhuǎn)向系統(tǒng)設(shè)計(jì)【單獨(dú)論文不含圖】》由會(huì)員分享,可在線閱讀,更多相關(guān)《車輛工程畢業(yè)設(shè)計(jì)論文液壓式四輪轉(zhuǎn)向系統(tǒng)設(shè)計(jì)【單獨(dú)論文不含圖】(46頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì) 摘  要 四輪轉(zhuǎn)向是指汽車的后輪也和前輪一樣具有一定的轉(zhuǎn)向功能,不僅可以與前輪同方向轉(zhuǎn)向,也可以與前輪反方向轉(zhuǎn)向。四輪轉(zhuǎn)向汽車的環(huán)保性和節(jié)能性與現(xiàn)代汽車的設(shè)計(jì)理念相吻合,它適應(yīng)汽車未來發(fā)展的趨勢(shì),存在廣闊的發(fā)展前景。本文對(duì)液壓式四輪轉(zhuǎn)向系統(tǒng)進(jìn)行了研究,主要工作如下: 對(duì)課題進(jìn)行了文獻(xiàn)檢索,查看了相關(guān)資料;對(duì)國內(nèi)外四輪轉(zhuǎn)向汽車的研究現(xiàn)狀進(jìn)行了詳細(xì)的介紹,明確了設(shè)計(jì)的基本內(nèi)容及需解決的主要問題;對(duì)四輪轉(zhuǎn)向系統(tǒng)進(jìn)行了分析,包括受力分析和運(yùn)動(dòng)學(xué)分析;設(shè)計(jì)了三種四輪轉(zhuǎn)向汽車的轉(zhuǎn)向液壓系統(tǒng)方案,經(jīng)過對(duì)比分析,選定其中一種作為最終的液壓式四輪轉(zhuǎn)向系統(tǒng)方案;確定該方

2、案中液壓系統(tǒng)的參數(shù);對(duì)該方案中液壓系統(tǒng)的液壓缸進(jìn)行設(shè)計(jì)和計(jì)算;對(duì)該方案中液壓系統(tǒng)的液壓元件進(jìn)行選取。 單獨(dú)論文不含圖,加153893706 關(guān)鍵詞:四輪轉(zhuǎn)向;系統(tǒng)分析;液壓系統(tǒng);液壓缸;液壓元件 ABSTRACT Four-wheel steering refers to the rear car and has some of the same front steering function, can not only with front wheel steering, also can in opposite direction wit

3、h front wheel steering. Four-wheel steering the environment protection and energy conservation car with modern car design idea coincide, it to adapt to automobile future development trends, existing broad development prospects. Based on the hydraulic four-wheel steering system and main work is as fo

4、llows: On issues of literature retrieval, examined the related material; To domestic and international research status of four-wheel steering cars were introduced in detail, has been clear about the design of the basic content and the main problems need to be solved; For four-wheel steering system

5、 is analyzed, including stress analysis and kinematics analysis; Design three four-wheel steering automobile steering hydraulic system scheme, through comparative analysis, select one as the final the hydraulic four-wheel steering system solution; To determine this scheme hydraulic system parameters

6、; For this scheme of the hydraulic cylinder hydraulic system design and calculation; For this scheme of the hydraulic system for selecting hydraulic element. Key words: Four-wheel steering; System analysis; Hydraulic system; The hydraulic cylinder; Hydraulic components III 目  錄

7、 摘要 I ABSTRACT II 第1章 緒論 1 1.1 選題的背景及目的 1 1.2 國內(nèi)外研究現(xiàn)狀 1 1.3 設(shè)計(jì)的基本內(nèi)容 5 1.4 設(shè)計(jì)解決的主要問題 6 第2章 四輪轉(zhuǎn)向汽車轉(zhuǎn)向系統(tǒng)分析 7 2.1 前輪轉(zhuǎn)向汽車與四輪轉(zhuǎn)向汽車車輪運(yùn)動(dòng)學(xué)分析對(duì)比 7 2.1.1 前輪轉(zhuǎn)向汽車車輪運(yùn)動(dòng)學(xué)分析 7 2.1.2 四輪轉(zhuǎn)向汽車車輪運(yùn)動(dòng)學(xué)分析 7 2.2 四輪轉(zhuǎn)向汽車受力分析 9 2.3 本章小結(jié) 10 第3章 四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)方案的確定 11 3.1 四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)方案一 11 3.2 四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)方案二 12 3.3

8、四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)方案三 13 3.4 四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)方案的確定 14 3.5 本章小結(jié) 15 第4章 轉(zhuǎn)向液壓缸的設(shè)計(jì)與計(jì)算 16 4.1 設(shè)計(jì)的主要技術(shù)指標(biāo)和要求 16 4.2 轉(zhuǎn)向液壓缸的主要尺寸的確定 16 4.2.1 轉(zhuǎn)向液壓缸內(nèi)徑及活塞桿直徑的確定 16 4.2.2 轉(zhuǎn)向液壓缸外徑及缸筒壁厚的確定 18 4.2.3 轉(zhuǎn)向液壓缸導(dǎo)向長度、活塞寬度和導(dǎo)向套滑動(dòng)面長度的確定 18 4.2.4 轉(zhuǎn)向液壓缸所受壓力的確定 18 4.2.5 轉(zhuǎn)向液壓缸最大流量和最大速度的確定 19 4.2.6 液壓缸缸筒底部厚度的確定 19 4.2.7 液壓缸活塞往復(fù)運(yùn)

9、動(dòng)時(shí)的速度之比的確定 20 4.2.8 液壓缸活塞行程時(shí)間的確定 20 4.2.9 液壓缸所做的功和功率的確定 21 4.3 液壓缸強(qiáng)度的校核 21 4.3.1 缸筒壁厚強(qiáng)度校核 21 4.3.2 活塞桿強(qiáng)度校核 22 4.4 本章小結(jié) 22 第5章 液壓元件的選取 23 5.1 液壓泵的選擇 23 5.1.1 計(jì)算液壓泵的最大工作壓力 23 5.1.2 計(jì)算液壓泵的最大流量 23 5.1.3 液壓泵規(guī)格的選擇 23 5.1.4 計(jì)算液壓泵的驅(qū)動(dòng)功率并選擇電動(dòng)機(jī) 24 5.2 液壓執(zhí)行元件的選擇 24 5.2.1 液壓缸的選擇 24 5.2.2 液壓馬達(dá)的選擇 2

10、4 5.3 液壓控制閥的選擇 25 5.4 液壓輔助元件的選擇 25 5.4.1 油箱的選擇 25 5.4.2 油管和油管接頭的選擇 25 5.4.3 蓄能器的選擇 26 5.4.4 液壓工作介質(zhì)、過濾器和壓力表的選擇 27 5.5 本章小結(jié) 27 結(jié)論 28 參考文獻(xiàn) 29 致謝 30 附錄A 31 附錄B 37 黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì) 第1章 緒  論 1.1 選題的背景及目的 隨著汽車技術(shù)的發(fā)展,汽車行駛速度的提高及道路行使密度的增大,作為實(shí)現(xiàn)主動(dòng)安全性的方法之一的四輪轉(zhuǎn)向技術(shù)日益受到重視。四輪轉(zhuǎn)向的主要優(yōu)點(diǎn)是在轉(zhuǎn)向時(shí)能夠

11、保持重心偏角基本為零,極大地改善了橫擺角速度和側(cè)向加速度的瞬態(tài)性能指標(biāo)。另外低速時(shí)能夠減小汽車的轉(zhuǎn)彎半徑,使汽車在低速行使時(shí)更加靈活,而且還能獨(dú)立地控制汽車的運(yùn)動(dòng)軌跡與姿態(tài),使方向角與姿態(tài)角重合,提高汽車的側(cè)向穩(wěn)定性;高速行駛時(shí)同相位轉(zhuǎn)向,方向盤到后輪產(chǎn)生轉(zhuǎn)彎力的時(shí)間相對(duì)滯后,使車身方向與實(shí)際行駛方向的偏差減小,從而具有較好的穩(wěn)定感。近幾年,載貨車和專用作業(yè)車的噸位逐漸增大,有的總重量已超過30t,汽車車軸由兩軸增加多軸,因而工程機(jī)械操縱的靈活性和穩(wěn)定性要求顯得越來越重要。在電子技術(shù)不斷提高,控制理論不斷完善的前提下,開展四輪轉(zhuǎn)向技術(shù)的研究已是眾多汽車廠商能否占有市場的關(guān)鍵。四輪轉(zhuǎn)向技術(shù)是未來

12、重型汽車轉(zhuǎn)向靈活性的發(fā)展趨勢(shì),在高速發(fā)展的現(xiàn)代化社會(huì),高的機(jī)械效率和低的能量消耗在汽車設(shè)計(jì)中具有很重要的地位。四輪轉(zhuǎn)向汽車與現(xiàn)代化的設(shè)計(jì)理念相吻合,即它的環(huán)保性和節(jié)能性,它適應(yīng)汽車發(fā)展的趨勢(shì),存在廣闊的市場前景。 本課題旨在對(duì)汽車四輪轉(zhuǎn)向系統(tǒng)的組成和結(jié)構(gòu)原理進(jìn)行簡單介紹,結(jié)合發(fā)展現(xiàn)狀,給出電液控制式四輪轉(zhuǎn)向液壓系統(tǒng)的設(shè)計(jì)過程,為設(shè)計(jì)開發(fā)四輪轉(zhuǎn)向系統(tǒng)提供參考依據(jù)。 1.2 國內(nèi)外研究現(xiàn)狀 所謂四輪轉(zhuǎn)向,即4WS(4 Wheel Steering),是指后輪也和前輪一樣具有一定的轉(zhuǎn)向功能,不僅可以與前輪同方向轉(zhuǎn)向,也可以與前輪反方向轉(zhuǎn)向。其主要目的是增強(qiáng)轎車在高速行駛或在側(cè)向風(fēng)力作用下的操縱

13、穩(wěn)定性,改善低速時(shí)的操縱輕便性,在轎車高速行駛時(shí)便于由—個(gè)車道向另一個(gè)車道的移動(dòng)調(diào)整,以減少調(diào)頭時(shí)的轉(zhuǎn)彎半徑。汽車的四輪轉(zhuǎn)向系統(tǒng)在20世紀(jì)80年代中期開始發(fā)展,四輪轉(zhuǎn)向主要有兩種方式:當(dāng)后輪轉(zhuǎn)向與前輪轉(zhuǎn)向方向相同時(shí)稱為同向位轉(zhuǎn)向;當(dāng)后輪轉(zhuǎn)向與前輪轉(zhuǎn)向方向相反時(shí)稱為逆向位轉(zhuǎn)向。四輪轉(zhuǎn)向技術(shù)目前被很多公司所采用,其中大多應(yīng)用在了大型車輛上,也有一些SUV以及跑車具有四輪轉(zhuǎn)向的功能。配備四輪轉(zhuǎn)向之后,車輛可以減少轉(zhuǎn)彎半徑、提高低速行駛時(shí)的機(jī)動(dòng)性以及高速行駛時(shí)的操縱性和可控制能力。我們以德爾福公司的OUADRASTEER四輪轉(zhuǎn)向系統(tǒng)為例對(duì)四輪轉(zhuǎn)向進(jìn)行介紹,它也是目前最為先進(jìn)的四輪轉(zhuǎn)向系統(tǒng)之一。OUAD

14、RASTEER是在傳統(tǒng)的前輪轉(zhuǎn)向基礎(chǔ)上增加了一個(gè)電動(dòng)盾輪轉(zhuǎn)向系統(tǒng)。系統(tǒng)有四個(gè)主要部件——前輪定位傳感器、可轉(zhuǎn)向的整體準(zhǔn)雙曲面后軸、電動(dòng)機(jī)驅(qū)動(dòng)的執(zhí)行器以及一個(gè)控制單元。前輪定位傳感器和車輛速度傳感器連續(xù)不斷地向控制單元報(bào)告數(shù)據(jù),控制單元根據(jù)報(bào)告的數(shù)據(jù)確定后輪合適的角度。通過計(jì)算,決定正確的操作階段。該系統(tǒng)有三種主要運(yùn)行方式:負(fù)相、中相、正相。低速行駛時(shí).后輪轉(zhuǎn)彎方向與前輪相反,這就是負(fù)相。中速行駛時(shí),后輪筆直而保持中相。高速行駛時(shí)。后輪處于正相,和前輪轉(zhuǎn)彎方向相同。在低速行駛時(shí),負(fù)相拖曳操縱,尾部跟隨車輛的真實(shí)軌跡,比兩輪轉(zhuǎn)向更緊密。這使得在城市交通中的駕駛更容易。低速操縱時(shí),如倒車上船板或野營

15、帶拖車停車時(shí),OUADRASTEER將使操縱更容易。倒拖車時(shí)。負(fù)相極大地改進(jìn)拖車對(duì)轉(zhuǎn)向動(dòng)作的反應(yīng),更容易使車輛就QUADRASTEER提高了車輛的高速行駛平穩(wěn)性。高速行駛時(shí)后輪和前輪的轉(zhuǎn)向相同,有助于減少車輛側(cè)滑或扭擺,對(duì)平衡車輛在超車、變道、或躲避不平路面時(shí)的反應(yīng)均有幫助。此外,OUADRASTEER和四輪驅(qū)動(dòng)系統(tǒng)也可以完全兼容,并能提高四輪驅(qū)動(dòng)系統(tǒng)的性能,根據(jù)制造廠商的要求,既能由駕駛員選擇,又能實(shí)現(xiàn)全自動(dòng)化。比如,使用選擇界面,駕駛員就能調(diào)節(jié)不同駕駛條件下后輪轉(zhuǎn)向的性能。選擇模式包括一個(gè)一般駕駛,—個(gè)拖車拖運(yùn),—個(gè)兩輪轉(zhuǎn)向。如果四輪轉(zhuǎn)向系統(tǒng)損壞的話。QUADRSEER系統(tǒng)還可控制回到正常

16、兩輪轉(zhuǎn)向模式。4WD可以兼容4WS,但是功能不同,但是有重合,起到的作用,設(shè)計(jì)的目的也不是很相同,4WS是對(duì)車的狀態(tài)的調(diào)整,還具有減少側(cè)風(fēng)對(duì)車身的影響。 近幾年國內(nèi)外都在積極開展四輪轉(zhuǎn)向技術(shù)。從英國利蘭公司1934年開始生產(chǎn)四軸載貨汽車算起,至今已有60多年的歷史。然而在一些工業(yè)發(fā)達(dá)國家卻由于法規(guī)方面的原因,在相當(dāng)長的時(shí)間內(nèi)一直不允許使用四軸車,在這方面較為典型的例子是原聯(lián)邦德國和美國。因此也就限制了四軸汽車的發(fā)展。但是由于四軸汽車比三軸和兩軸汽車裝載質(zhì)量大,有利于改善交通擁擠狀況,1985年原聯(lián)邦德國巴特勒研究所建議將四軸汽車作為改善交通流量的載貨汽車,1989年本茨公司生產(chǎn)了1320輛四

17、軸汽車,具有90年代先進(jìn)水平。四軸汽車的轉(zhuǎn)向靈活性差,于是有了雙前軸轉(zhuǎn)向汽車。進(jìn)入20世紀(jì)90年代,電子技術(shù)的高速發(fā)展和微電腦在汽車上應(yīng)用日趨成熟,使汽車開始進(jìn)入智能化階段。1985年日產(chǎn)汽車公司推出世界上第一套用于轎車的四輪轉(zhuǎn)向系統(tǒng)(電子控制液壓工作式),并把它命名為“高性能主動(dòng)懸掛”。同時(shí)本系統(tǒng)增加了滯后控制,即讓后輪轉(zhuǎn)向時(shí)間比前輪稍微延遲一些。這種控制方法的應(yīng)用避免了后輪和前輪在同一時(shí)間內(nèi)做同相位轉(zhuǎn)向時(shí)后輪防礙車身旋轉(zhuǎn)的情況,消除了轉(zhuǎn)彎開始時(shí)汽車偏擺的滯后,得到自然的轉(zhuǎn)向反應(yīng)性?!案咝阅苤鲃?dòng)懸掛”是四輪轉(zhuǎn)向系統(tǒng)控制方法的一次突破。新的控制理論不斷地與四輪轉(zhuǎn)向技術(shù)相結(jié)合,例如自適應(yīng)控制,模

18、糊控制,最優(yōu)控制,神經(jīng)網(wǎng)絡(luò)控制以及模糊神經(jīng)網(wǎng)絡(luò)控制,使得四輪轉(zhuǎn)向技術(shù)設(shè)計(jì)理念模塊化,智能化。日產(chǎn)汽車公司之四輪轉(zhuǎn)向系統(tǒng)(HICAS)(Irie,1989;Furukawa,1989)利用后輪先中立再同相位轉(zhuǎn)向之車輛重心側(cè)滑角控制方法,此四輪轉(zhuǎn)向系統(tǒng)包括:偵測車速及方向盤轉(zhuǎn)動(dòng)量之傳感器、接受車速及方向盤轉(zhuǎn)動(dòng)量之輸入以計(jì)算后輪轉(zhuǎn)角大小之控制器、液壓系統(tǒng)及安全裝置。當(dāng)控制器接受車速及方向盤轉(zhuǎn)動(dòng)量之輸入時(shí),會(huì)立即經(jīng)控制器計(jì)算出后輪所需之轉(zhuǎn)角后,傳送訊號(hào)至液壓系統(tǒng),進(jìn)而推動(dòng)后輪至所要求之轉(zhuǎn)角。日產(chǎn)汽車公司之后又研發(fā)出利用后輪先逆向立轉(zhuǎn)向再同相位轉(zhuǎn)向之四輪轉(zhuǎn)向系統(tǒng)(SUPERIdlCAS)(Egudli,

19、1989)。此四輪轉(zhuǎn)向系統(tǒng)系利用控制器接受車速傳感器及方向盤轉(zhuǎn)角傳感器之訊號(hào)來計(jì)算出后輪所需之轉(zhuǎn)角,繼而使液壓系統(tǒng)推動(dòng)后輪轉(zhuǎn)向,而此四輪轉(zhuǎn)向車輛之后輪轉(zhuǎn)角最多只可達(dá)到1度。此四輪轉(zhuǎn)向系統(tǒng)亦配有安全裝置,當(dāng)四輪轉(zhuǎn)向車輛因液壓系統(tǒng)或控制器發(fā)生故障時(shí),安全裝置會(huì)令后輪恢復(fù)至中立轉(zhuǎn)向,使車輛回復(fù)至一般前輪轉(zhuǎn)向車輛之操作,以免造成行車之危險(xiǎn)。 從20世紀(jì)初(1907年),日本政府頒發(fā)第一個(gè)關(guān)于四輪轉(zhuǎn)向的專利證書開始,對(duì)于汽車四輪轉(zhuǎn)向的研究一直伴隨著汽車工業(yè)的發(fā)展而進(jìn)行著。二戰(zhàn)期間,美國的一些軍用車輛和工程車輛上采用一種前、后輪逆相位偏轉(zhuǎn)的簡單機(jī)械式四輪轉(zhuǎn)向系統(tǒng),以適應(yīng)惡劣的路況,改善汽車低速轉(zhuǎn)向時(shí)的機(jī)

20、動(dòng)性能。1962年,在日本汽車工程協(xié)會(huì)的技術(shù)會(huì)議上,提出了后輪主動(dòng)轉(zhuǎn)向的四輪轉(zhuǎn)向技術(shù),開始了現(xiàn)代四輪轉(zhuǎn)向系統(tǒng)的研究。在70年代末,本田和馬自達(dá)積極投入到四輪轉(zhuǎn)向的開發(fā)。1985年,日本的尼桑在客車上應(yīng)用了世界上第一例實(shí)用的四輪轉(zhuǎn)向系統(tǒng),應(yīng)用在一種車型的高性能主動(dòng)控制懸架上。隨著對(duì)四輪轉(zhuǎn)向這一領(lǐng)域研究的不斷進(jìn)展,出現(xiàn)了多種不同結(jié)構(gòu)形式、不同控制策略的實(shí)用四輪轉(zhuǎn)向系統(tǒng)。一般來說,四輪轉(zhuǎn)向汽車在轉(zhuǎn)向過程中,根據(jù)不同的行駛條件,前、后輪轉(zhuǎn)向角之間應(yīng)遵循一定的規(guī)律。目前,典型四輪轉(zhuǎn)向汽車的后輪偏轉(zhuǎn)規(guī)律是: (1)逆相位轉(zhuǎn)向 在低速行駛或者方向盤轉(zhuǎn)角較大時(shí),前、后輪實(shí)現(xiàn)逆相位轉(zhuǎn)向,即后輪的偏轉(zhuǎn)方向與前

21、輪的偏轉(zhuǎn)方向相反,且偏轉(zhuǎn)角度隨方向盤轉(zhuǎn)角增大而在一定范圍內(nèi)增大(后輪最大轉(zhuǎn)向角一般為5°左右)。這種轉(zhuǎn)向方式可改善汽車低速時(shí)的操縱輕便性,減小汽車的轉(zhuǎn)彎半徑,提高汽車的機(jī)動(dòng)靈活性。便于汽車掉頭轉(zhuǎn)彎、避障行駛、進(jìn)出車庫和停車場。 (2)同相位轉(zhuǎn)向 在中、高速行駛或方向盤轉(zhuǎn)角較小時(shí),前、后輪實(shí)現(xiàn)同相位轉(zhuǎn)向,即后輪的偏轉(zhuǎn)方向與前輪的偏轉(zhuǎn)方向相同(后輪最大轉(zhuǎn)角一般為1°左右)。使汽車車身的橫擺角速度大大減小,可減小汽車車身發(fā)生動(dòng)態(tài)側(cè)偏的傾向,保證汽車在高速超車、進(jìn)出高速公路、高架引橋及立交橋時(shí),處于不足轉(zhuǎn)向狀態(tài)?,F(xiàn)在,有許多四輪轉(zhuǎn)向汽車把改善汽車操縱性能的重點(diǎn)放在提高汽車高速行駛的操縱穩(wěn)定性上,而

22、不過分要求汽車在低速行駛時(shí)的轉(zhuǎn)向機(jī)動(dòng)靈活性。其工作特點(diǎn)是低速時(shí)汽車只采用前輪轉(zhuǎn)向,只在汽車行駛速度達(dá)到一定數(shù)值后(如50km/h),后輪才參與轉(zhuǎn)向,進(jìn)行同相位四輪轉(zhuǎn)向。與普通的前輪轉(zhuǎn)向汽車相比,四輪轉(zhuǎn)向汽車具有如下特點(diǎn): 優(yōu)越性: (1)轉(zhuǎn)向操作的響應(yīng)加快,準(zhǔn)確性提高; (2)轉(zhuǎn)向操作的機(jī)動(dòng)靈活性和行駛穩(wěn)定性提高; (3)抗側(cè)向干擾的穩(wěn)定性好; (4)超車時(shí),變換車道更容易,減小了汽車產(chǎn)生擺尾和側(cè)滑的可能性。 不足性: (1)低速轉(zhuǎn)向時(shí),汽車尾部容易碰到障礙物; (2)實(shí)現(xiàn)理想控制的技術(shù)難度大; (3)轉(zhuǎn)向系統(tǒng)結(jié)構(gòu)復(fù)雜、成本高; (4)轉(zhuǎn)向過程中,阿克曼定理難保證。 進(jìn)入

23、上世紀(jì)九十年代,隨著電子工業(yè)的發(fā)展,使得電子技術(shù)廣泛應(yīng)用于提高車輛總體性能上,尤其是改善車輛操縱穩(wěn)定性方面,加上現(xiàn)代控制理論的應(yīng)用,以及計(jì)算機(jī)模擬仿真技術(shù)的融入,使得4WS發(fā)展更加成熟、應(yīng)用更為廣泛在工程機(jī)械領(lǐng)域,由于工程車輛行走條件以及自身總體布置等要求,需要的車輛行駛速度可以很低,但轉(zhuǎn)向的功能要求很高,所以普通兩輪轉(zhuǎn)向車輛難以實(shí)現(xiàn)。由于四輪轉(zhuǎn)向車輛的轉(zhuǎn)彎半徑明顯小于前輪轉(zhuǎn)向車輛(最高時(shí)可以縮小一半),使工程車輛在狹窄場地具有良好的通過性。四輪轉(zhuǎn)向已在從國外引進(jìn)的工程車輛上得到實(shí)際應(yīng)用,如美國CMI Terex的四履帶水泥攤鋪機(jī)SF-3004和美國Case公司的560挖溝機(jī)等。其轉(zhuǎn)向系統(tǒng)主

24、要采用SAUER公司提供的電液轉(zhuǎn)向系(EHPS)?;镜霓D(zhuǎn)向系由先導(dǎo)閥和電液轉(zhuǎn)向組合閥塊組成,組合閥塊控制輸出到轉(zhuǎn)向缸的油流與先導(dǎo)閥的輸人油流成正例。此系統(tǒng)還可用控制手柄實(shí)現(xiàn)電子信號(hào)輸入,以及加入微控制器實(shí)現(xiàn)電子信號(hào)輸入。 電液轉(zhuǎn)向系的優(yōu)點(diǎn):很高的轉(zhuǎn)向壓力只需要較小的轉(zhuǎn)向液壓缸;輔助閥的低壓可以降低系統(tǒng)的噪聲;當(dāng)泵失效時(shí)可以實(shí)現(xiàn)手動(dòng)緊急制動(dòng);降低車輛的側(cè)偏加速度:微控制器可以實(shí)現(xiàn)無轉(zhuǎn)向漂流,可變轉(zhuǎn)向比,自動(dòng)轉(zhuǎn)向,以及CAN總線接口等??v觀工程機(jī)械的發(fā)展,在技術(shù)上大致經(jīng)歷了三次革命:柴油機(jī)的出現(xiàn)、液壓技術(shù)的廣泛應(yīng)用以及電子技術(shù),尤其是計(jì)算機(jī)技術(shù)的廣泛應(yīng)用。要使工程機(jī)械高效節(jié)能,就要對(duì)發(fā)動(dòng)機(jī)和傳

25、動(dòng)系統(tǒng)進(jìn)行控制,合理分配功率,使其處于最佳工況;為了減輕駕駛員勞動(dòng)強(qiáng)度和改善操縱性能,需要采用自動(dòng)控制,實(shí)現(xiàn)工程機(jī)械自動(dòng)化;要完成高技能的作業(yè),就需要智能化;為了提高安全性,需要安全控制,進(jìn)行運(yùn)行狀態(tài)監(jiān)視,故障自動(dòng)報(bào)警;隨著建設(shè)領(lǐng)域的擴(kuò)展,為了避免人員到達(dá)無法及不易接近的場所及作業(yè)環(huán)境十分惡劣的地方去作業(yè),需要采用遠(yuǎn)距離遙控和無人駕駛技術(shù)。這一切都說明了工程機(jī)械當(dāng)前的主要問題是控制問題。要解決控制問題,必須引人具有良好控制性能和信息處理能力的電子技術(shù)、傳感器技術(shù)和電液控制技術(shù)以及相應(yīng)的軟件控制技術(shù)為一體的先進(jìn)的控制器。 基于四輪轉(zhuǎn)向的發(fā)展方向,目前國內(nèi)外的公司對(duì)于四輪轉(zhuǎn)向機(jī)構(gòu)的控制主要采用的

26、是數(shù)字控制,這是鑒于數(shù)字控制的很多優(yōu)點(diǎn):程序化控制,控制器按照所設(shè)計(jì)的控制規(guī)律進(jìn)行運(yùn)算和數(shù)字信息的處理,主要通過程序(即軟件)來實(shí)現(xiàn),若改變控制規(guī)律只需改變軟件,而不必改變系統(tǒng)的硬件結(jié)構(gòu):控制精度高,在模擬控制系統(tǒng)中,控制器的精度由元件的精度而定,數(shù)字控制器精度由字長決定;穩(wěn)定性好;軟件復(fù)用,在模擬系統(tǒng)中,需用相同的硬件環(huán)境實(shí)現(xiàn),數(shù)字控制器是程序控制,只需要設(shè)計(jì)和編寫實(shí)現(xiàn)其模型的子程序模塊,即可方便地實(shí)現(xiàn)多個(gè)功能的環(huán)節(jié)。 目前各個(gè)廠家大多采用的是PLC、單片機(jī)應(yīng)用于四輪轉(zhuǎn)向控制器中,功能基本能夠?qū)崿F(xiàn),相比較之下。信號(hào)處理能力較強(qiáng)的數(shù)字信號(hào)處理器(DSP)各方面均性能優(yōu)于以上三種處理器。DSP

27、(Digital Signal Processor)是新世紀(jì)數(shù)字化革命的核心。它是一種獨(dú)特的微處理器,具有可編程性,且實(shí)時(shí)運(yùn)行速度遠(yuǎn)遠(yuǎn)超過通用微處理器。強(qiáng)大的數(shù)據(jù)處理能力和高速的運(yùn)行速度,是DSP最值得稱道的兩大特色。DSP芯片是一種特別適合進(jìn)行數(shù)字信號(hào)處理的微處理器。它強(qiáng)調(diào)運(yùn)算處理的實(shí)時(shí)性,因此除了具備普通微處理器所強(qiáng)調(diào)的高速運(yùn)算和控制功能外,主要針對(duì)實(shí)時(shí)數(shù)字信號(hào)處理,在處理器結(jié)構(gòu)、指令系統(tǒng)和數(shù)據(jù)流程上做了很大的改動(dòng)。它具有靈活、精確、可靠性好、體積小、功耗低和易于大規(guī)模集成等優(yōu)點(diǎn)。 1.3 設(shè)計(jì)的基本內(nèi)容 1.確定四輪轉(zhuǎn)向液壓系統(tǒng)方案 2.各液壓回路的設(shè)計(jì) 3.繪制液壓系統(tǒng)圖 4

28、.繪制壓力控制回路圖 5.繪制流量控制回路圖 6.繪制方向控制回路圖 1.4 設(shè)計(jì)解決的主要問題 1. 四輪轉(zhuǎn)向汽車的系統(tǒng)分析 2. 通過各種方案的對(duì)比確定四輪轉(zhuǎn)向液壓系統(tǒng)的最優(yōu)方案 3. 轉(zhuǎn)向液壓缸的設(shè)計(jì) 4. 液壓系統(tǒng)的液壓元件的選取 5. 繪制液壓系統(tǒng)圖及相應(yīng)液壓回路圖 第2章 四輪轉(zhuǎn)向汽車轉(zhuǎn)向系統(tǒng)分析 2.1前輪轉(zhuǎn)向汽車與四輪轉(zhuǎn)向汽車車輪運(yùn)動(dòng)學(xué)分析對(duì)比 2.1.1前輪轉(zhuǎn)向汽車車輪運(yùn)動(dòng)學(xué)分析 圖2.1 前輪轉(zhuǎn)向示意圖 如圖2

29、.1所示,O點(diǎn)就是該車輛的轉(zhuǎn)向軸線或轉(zhuǎn)向中心。從轉(zhuǎn)向軸線O到車輛的縱向?qū)ΨQ面的距離為R,稱為車輛轉(zhuǎn)彎半徑。如圖中所示,輪式車輛轉(zhuǎn)向時(shí)內(nèi)外導(dǎo)向輪對(duì)于車輛本身是不相等的,即a和b,這兩個(gè)角的對(duì)應(yīng)關(guān)系如式 (2.1) (2.2) 式中  M——兩側(cè)主銷中心距離; L——前后輪距; 由上式可以得出當(dāng)內(nèi)輪轉(zhuǎn)為時(shí),外輪轉(zhuǎn)角 (2.3) 2.1.2四輪轉(zhuǎn)向汽車車輪運(yùn)動(dòng)學(xué)分析 如圖2.2所示,如果前橋主銷之間距離等于后輪兩主銷之間的距離時(shí),即

30、 (2.4) 圖2.2 四輪轉(zhuǎn)向示意圖 則有: (2.5) (2.6) (2.7) 式中  、——兩側(cè)主銷中心距離; 、——后輪到轉(zhuǎn)向中心線的軸向距離; 當(dāng)前、后橋兩主銷之間的距離不相等時(shí),時(shí),要滿足通過各個(gè)車輪幾何軸線的垂直平面都應(yīng)相交于同一條直線上,則 (2.8) 由上式可得:與的差值越大,與也越大。而當(dāng)轉(zhuǎn)向輪偏角較大時(shí),前 后輪的瞬時(shí)

31、轉(zhuǎn)向中心就不會(huì)重合,其差值隨著與差值的增大而增大,使機(jī)械在轉(zhuǎn)向半徑較小時(shí),轉(zhuǎn)向輪產(chǎn)生一定的滑移。因此應(yīng)盡量減小與的差值,最好相等。在此選擇二者相等,由此可得: (2.9) (2.10) (2.11) 2.2四輪轉(zhuǎn)向汽車受力分析 圖2.3 四輪轉(zhuǎn)向汽車車體受力分析圖 車輛在行駛中的受力如圖2.3所示。圖中x,y為車體坐標(biāo);X,Y為路面坐標(biāo);上面為車體俯視圖;左下角為車體側(cè)面;右下角為車輪路面對(duì)輪胎的橫向力和,縱向

32、力是和,垂直方向的力是和。這里下標(biāo)f和r分別代指前后輪。車體的動(dòng)力學(xué)方程為: (2.12) (2.13) (2.14) 式中  ——車身質(zhì)量; 、——車身沿x,y軸速度; r——車身旋轉(zhuǎn)角速度; 、——一前后輪轉(zhuǎn)角; 、——一車身質(zhì)點(diǎn)到前后輪的距離; ——轉(zhuǎn)動(dòng)慣量; 當(dāng)車輛在原地轉(zhuǎn)向時(shí),其系統(tǒng)質(zhì)心不動(dòng);故和以及r均為0,此時(shí)系統(tǒng)可簡化為一單自由度的模型。動(dòng)力學(xué)方程為: (2.15) 即:

33、 (2.16) 式中   ——轉(zhuǎn)動(dòng)慣量;  ——轉(zhuǎn)角加速度; ——轉(zhuǎn)向力矩; ——摩阻力距; 2.3 本章小結(jié) 本章對(duì)四輪轉(zhuǎn)向汽車轉(zhuǎn)向系統(tǒng)進(jìn)行了分析,對(duì)比了前輪轉(zhuǎn)向汽車與四輪轉(zhuǎn)向汽車車輪運(yùn)動(dòng)學(xué)分析,并對(duì)四輪轉(zhuǎn)向汽車進(jìn)行了受力分析。 第3章 四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)方案的確定 3.1四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)方案一 圖3.1 四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)圖 如圖3.1所示,四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)方案一的結(jié)構(gòu)組成和工作原理如下: 結(jié)構(gòu)組成:油箱、過濾器、液壓泵、電動(dòng)機(jī)、先導(dǎo)型電磁溢流閥、調(diào)速

34、閥、壓力表、壓力表開關(guān)、蓄能器(以上均使用一個(gè))、兩個(gè)三位四通電液比例換向閥、八個(gè)單向閥、四個(gè)同步閥、四個(gè)液壓缸。 工作原理:同步閥和一對(duì)轉(zhuǎn)向液壓缸組成前、后輪轉(zhuǎn)向執(zhí)行機(jī)構(gòu),通過兩個(gè)電液比例換向閥控制前、后輪轉(zhuǎn)向執(zhí)行機(jī)構(gòu)實(shí)現(xiàn)車輪轉(zhuǎn)向,前、后輪轉(zhuǎn)向機(jī)構(gòu)用同步閥來實(shí)現(xiàn)兩個(gè)轉(zhuǎn)向液壓油缸的同步。當(dāng)電液比例換向閥位于左位時(shí),液壓泵供油經(jīng)電液比例換向閥、分流閥向兩個(gè)液壓缸無桿腔輸入等量的油液,兩液壓缸的活塞桿同步向外伸出,有桿腔的油液經(jīng)單向閥及電液比例換向閥流回油箱;當(dāng)電液比例換向閥右位工作時(shí),液壓泵供油經(jīng)電液比例換向閥,分流閥向液壓缸有桿腔輸入等量的油液,兩液壓缸的活塞桿同步向內(nèi)縮回,無桿腔的油液經(jīng)單

35、向閥及電液比例換向閥流回油箱。先導(dǎo)型電磁溢流閥設(shè)定系統(tǒng)的供油壓力(基本可以保證在工作狀態(tài)下,保持泵的出口壓力恒定)。當(dāng)方向盤發(fā)出轉(zhuǎn)向指令后經(jīng)過電位傳感器向控制器輸入電壓信號(hào),控制器經(jīng)過計(jì)算、分析,向電液比例換向閥組施加電信號(hào),電信號(hào)經(jīng)過放大,控制電液比例換向閥的開口,通過電液比例換向閥來控制流入轉(zhuǎn)向液壓缸的流量與閥的開口成正比,從而控制轉(zhuǎn)向液壓缸活塞桿的伸長量,間接達(dá)到控制各個(gè)轉(zhuǎn)向輪的偏轉(zhuǎn)角度的目的。為了提高控制精度,四個(gè)轉(zhuǎn)向輪上均裝有非接觸式霍爾效應(yīng)傳感器,并通過傳感器把各輪的實(shí)際轉(zhuǎn)角反饋給控制器,控制器再經(jīng)過計(jì)算、分析,重新發(fā)出指令信號(hào),糾正希望轉(zhuǎn)角與實(shí)際轉(zhuǎn)角的偏差。 3.2四輪轉(zhuǎn)向汽車

36、轉(zhuǎn)向液壓系統(tǒng)方案二 圖3.2 四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)圖 如圖3.2所示,四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)方案二的結(jié)構(gòu)組成和工作原理如下: 結(jié)構(gòu)組成:油箱、過濾器、液壓泵、電動(dòng)機(jī)、先導(dǎo)型電磁溢流閥、調(diào)速閥、壓力表、壓力表開關(guān)、蓄能器(以上均使用一個(gè))、兩個(gè)三位四通電液比例換向閥、兩個(gè)同步閥、四個(gè)二位三通換向閥、四個(gè)平衡閥、四個(gè)液壓缸。 工作原理:同步閥和一對(duì)轉(zhuǎn)向液壓缸組成前、后輪轉(zhuǎn)向執(zhí)行機(jī)構(gòu),通過兩個(gè)電液比例換向閥控制前、后輪轉(zhuǎn)向執(zhí)行機(jī)構(gòu)實(shí)現(xiàn)車輪轉(zhuǎn)向,前、后輪轉(zhuǎn)向機(jī)構(gòu)用同步閥來實(shí)現(xiàn)兩個(gè)轉(zhuǎn)向液壓油缸的同步。當(dāng)電液比例換向閥位于左位時(shí),液壓泵供油經(jīng)電液比例換向閥、同步閥和平衡閥向兩個(gè)液壓缸無桿

37、腔輸入等量的油液,兩液壓缸的活塞桿同步向外伸出,有桿腔的油經(jīng)二位三通換向閥和電液比例換向閥流回油箱;當(dāng)電液比例換向閥右位工作時(shí),液壓泵供油經(jīng)電液比例換向閥、分流集流閥(同步閥)和平衡閥向液壓缸有桿腔輸入等量的油液,兩液壓缸的活塞桿同步向內(nèi)縮回,無桿腔的油經(jīng)二位三通換向閥和電液比例換向閥流回油箱。當(dāng)系統(tǒng)中轉(zhuǎn)向執(zhí)行機(jī)構(gòu)出現(xiàn)不同步的時(shí)候,運(yùn)行較快的液壓缸排除的油會(huì)通過二位三通換向閥向另一相連的液壓缸補(bǔ)油,糾正同步閥產(chǎn)生的同步誤差。平衡閥起平衡支撐的作用。先導(dǎo)型電磁溢流閥設(shè)定系統(tǒng)的供油壓力(基本可以保證在工作狀態(tài)下,保持泵的出口壓力恒定)。當(dāng)方向盤發(fā)出轉(zhuǎn)向指令后經(jīng)過電位傳感器向控制器輸入電壓信號(hào),控制

38、器經(jīng)過計(jì)算、分析,向電液比例換向閥組施加電信號(hào),電信號(hào)控制經(jīng)過放大控制比例閥的開口,同時(shí)泵經(jīng)溢流閥向系統(tǒng)提供恒壓油流,通過電液比例換向閥組來控制流入轉(zhuǎn)向液壓缸的流量與閥的開口成正比,從而控制轉(zhuǎn)向液壓油缸活塞桿的伸長量,間接達(dá)到控制各個(gè)轉(zhuǎn)向輪的偏轉(zhuǎn)角度的目的。為了提高控制精度,四個(gè)轉(zhuǎn)向輪上均裝有非接觸式霍爾效應(yīng)傳感器,并通過傳感器把各輪的實(shí)際轉(zhuǎn)角反饋給控制器,控制器再經(jīng)過計(jì)算、分析,重新發(fā)出指令信號(hào),糾正希望轉(zhuǎn)角與實(shí)際轉(zhuǎn)角的偏差。 3.3四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)方案三 圖3.3 四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)圖 如圖3.3所示,四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)方案三的結(jié)構(gòu)組成和工作原理如下: 結(jié)構(gòu)

39、組成:油箱、過濾器、液壓泵、電動(dòng)機(jī)、先導(dǎo)型電磁溢流閥、調(diào)速閥、壓力表、壓力表開關(guān)、蓄能器(以上均使用一個(gè))、兩個(gè)三位四通電液比例換向閥、四個(gè)同步液壓馬達(dá)、八個(gè)單向閥、兩個(gè)溢流閥、四個(gè)二位四通換向閥、四個(gè)液壓缸。 工作原理:兩個(gè)同步馬達(dá)、兩個(gè)二位四通換向閥和兩個(gè)轉(zhuǎn)向液壓缸組成前、后輪轉(zhuǎn)向執(zhí)行機(jī)構(gòu),通過兩個(gè)電液比例換向閥控制前、后輪轉(zhuǎn)向執(zhí)行機(jī)構(gòu)實(shí)現(xiàn)車輪轉(zhuǎn)向,前、后輪轉(zhuǎn)向機(jī)構(gòu)用同步馬達(dá)來實(shí)現(xiàn)兩個(gè)轉(zhuǎn)向液壓油缸的同步。當(dāng)電液比例換向閥位于右位時(shí),液壓泵供油經(jīng)電液比例換向閥、兩個(gè)同步液壓馬達(dá)和兩個(gè)二位四通換向閥向兩個(gè)液壓缸無桿腔輸入等量的油液,兩液壓缸的活塞桿同步向外伸出,有桿腔的油液經(jīng)二位四通換向閥和

40、電液比例換向閥流回油箱;當(dāng)電液比例換向閥左位工作時(shí),液壓泵供油經(jīng)電液比例換向閥、兩個(gè)同步液壓馬達(dá)和兩個(gè)二位四通換向閥向液壓缸有桿腔輸入等量的油液,兩液壓缸的活塞桿同步向內(nèi)縮回,無桿腔的油液經(jīng)二位四通換向閥和電液比例換向閥流回油箱。當(dāng)系統(tǒng)中轉(zhuǎn)向執(zhí)行機(jī)構(gòu)出現(xiàn)不同步時(shí),運(yùn)行較快的液壓缸多余的油經(jīng)單向閥和溢流閥流回油箱;當(dāng)由于某只液壓缸運(yùn)行較慢致使它所在的油路發(fā)生真空時(shí),由它所連接的單向閥經(jīng)油箱吸油對(duì)其所在的油路進(jìn)行補(bǔ)油。先導(dǎo)型電磁溢流閥設(shè)定系統(tǒng)的供油壓力(基本可以保證在工作狀態(tài)下,保持泵的出口壓力恒定)。當(dāng)方向盤發(fā)出轉(zhuǎn)向指令后經(jīng)過電位傳感器向控制器輸入電壓信號(hào),控制器經(jīng)過計(jì)算、分析,向電液比例換向閥

41、組施加電信號(hào),電信號(hào)控制經(jīng)過放大控制比例閥的開口,同時(shí)泵經(jīng)先導(dǎo)型電磁溢流閥向系統(tǒng)提供恒壓油流,通過電液比例換向閥組來控制流入轉(zhuǎn)向液壓缸的流量與閥的開口成正比,從而控制轉(zhuǎn)向液壓缸活塞桿的伸長量,間接達(dá)到控制各個(gè)轉(zhuǎn)向輪的偏轉(zhuǎn)角度的目的。為了提高控制精度,四個(gè)轉(zhuǎn)向輪上均裝有非接觸式霍爾效應(yīng)傳感器,并通過傳感器把各輪的實(shí)際轉(zhuǎn)角反饋給控制器,控制器再經(jīng)過計(jì)算、分析,重新發(fā)出指令信號(hào),糾正希望轉(zhuǎn)角與實(shí)際轉(zhuǎn)角的偏差。 3.4四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)方案的確定 上述三個(gè)方案中,方案一中,分流閥和一對(duì)轉(zhuǎn)向液壓油缸組成前、后輪轉(zhuǎn)向執(zhí)行機(jī)構(gòu),通過兩個(gè)流量比例控制閥控制前、后輪轉(zhuǎn)向執(zhí)行機(jī)構(gòu)實(shí)現(xiàn)車輪轉(zhuǎn)向,前、后輪轉(zhuǎn)

42、向機(jī)構(gòu)用分流閥來實(shí)現(xiàn)兩個(gè)轉(zhuǎn)向液壓油缸的同步。本文使用的轉(zhuǎn)向執(zhí)行機(jī)構(gòu)采用單活塞桿轉(zhuǎn)向液壓油缸,單活塞桿轉(zhuǎn)向液壓油缸有桿腔和無桿腔的面積不相等,因此單活塞桿雙作用油缸在伸出和縮進(jìn)時(shí)工作特性不一致。方案一中同步閥首先在兩個(gè)轉(zhuǎn)向液壓油缸之間分配流量,確保轉(zhuǎn)向液壓油缸在靜態(tài)時(shí)同步,當(dāng)四輪轉(zhuǎn)向汽車在運(yùn)動(dòng)過程中轉(zhuǎn)向時(shí),車輪負(fù)載會(huì)發(fā)生變化且同步閥響應(yīng)速度比較慢,執(zhí)行機(jī)構(gòu)動(dòng)態(tài)性能不理想,較容易產(chǎn)生同步誤差。方案二與方案三作比較,由于方案三中有四只二位四通換向閥,他們可以改變四個(gè)轉(zhuǎn)向液壓缸油液的流動(dòng)方向,使四只液壓缸活塞桿既可以同時(shí)同步運(yùn)行,也可以根據(jù)需要各自運(yùn)行,可以使汽車實(shí)現(xiàn)縱向行駛、橫向行駛、縱向45度行駛

43、、橫向45度行駛等多種行駛方式,所以方案三的轉(zhuǎn)向方式更多、實(shí)用性更強(qiáng)、控制精度更高、響應(yīng)速度更快,所以最終選定方案三作為本次設(shè)計(jì)的液壓式四輪轉(zhuǎn)向系統(tǒng)方案。 3.5 本章小結(jié) 本章列出了四輪轉(zhuǎn)向汽車液壓系統(tǒng)的三種方案,并分別介紹了三種方案中液壓系統(tǒng)的結(jié)構(gòu)組成和工作原理,通過對(duì)四輪轉(zhuǎn)向汽車轉(zhuǎn)向液壓系統(tǒng)的三種方案進(jìn)行對(duì)比分析,最終選定方案三作為本次設(shè)計(jì)的液壓式四輪轉(zhuǎn)向系統(tǒng)方案。 第4章 轉(zhuǎn)向液壓缸的設(shè)計(jì)與計(jì)算 4.1設(shè)計(jì)的主要技術(shù)指標(biāo)和要求 1.車自重17噸,總重量30噸; 2.液壓缸行程L=250mm、負(fù)載力F=240

44、00N、液壓泵供油壓力=20MPa。 4.2轉(zhuǎn)向液壓缸的主要尺寸的確定 4.2.1轉(zhuǎn)向液壓缸內(nèi)徑D及活塞桿直徑d的確定 (a)無桿腔進(jìn)油 (b)有桿腔進(jìn)油 圖4.1 液壓缸主要設(shè)計(jì)參數(shù) 如圖4.1所示可得:無桿腔為主工作腔          (4.1) 有桿腔為主工作腔        (4.2)        (4.3) (4.4) 式中

45、  ——主工作腔壓力,Pa; ——回油腔壓力,Pa; ——無桿腔活塞的有效面積,; ——液壓缸有桿腔活塞的有效面積,; D、d——液壓缸活塞直徑、活塞桿直徑,m; ——液壓缸的最大負(fù)載力,N; ——液壓缸機(jī)械效率,一般取=0.90~0.97; 通常,液壓缸以無桿腔作為主工作腔,即活塞桿受壓工作,活塞面積為 (4.5) 表4.1 按工作壓力選取桿徑比 工作壓力/MPa ≤5.0 5.0~7.0 ≥7.0 d/D 0.5~0.55 0.62~0.70 0.7 已知液壓泵供油壓力

46、P=20Mpa﹥7.0Mpa,所以由表4.1可取 d/D=0.7 則轉(zhuǎn)向液壓缸無桿腔直徑D 得: (4.6) 假設(shè)回油口壓力為零,可得: (4.7) 由上式可得轉(zhuǎn)向液壓缸內(nèi)徑D: D=57mm (4.8) 則活塞桿直徑 d=0.7D=57×0.7=39.9mm (4.9) 表4.2 液壓缸內(nèi)徑系列和活塞桿直徑系列 液壓缸內(nèi)徑系列(GB/T2348-1993)/mm 8、10、

47、12、16、20、25、32、40、50、63、80、90、100、 110、125、140、160、180、200、220、250、280、320、360 活塞桿直徑系列(GB/T2348-1993)/mm 4、5、6、8、10、12、14、16、18、20、22、25、28、32、36、40、45、50、56、63、70、80、90、100、110、125、140、160、180、200、220、250、280、320、360 液壓缸內(nèi)徑D和活塞桿直徑d的最終確定值按上表就近圓整為標(biāo)準(zhǔn)值,以便選取標(biāo)準(zhǔn)缸或自行設(shè)計(jì)缸時(shí)采用標(biāo)準(zhǔn)的密封件,所以由表4.2可取 轉(zhuǎn)向液壓缸內(nèi)徑D=63

48、mm 活塞桿直徑d=40mm 4.2.2轉(zhuǎn)向液壓缸外徑及缸筒壁厚的確定 表4.3 液壓缸缸筒外徑與缸筒內(nèi)徑和額定壓力的關(guān)系 額定壓力/MPa 缸筒內(nèi)徑D 材料 40 50 63 80 100 125 140 工程液壓缸 缸筒外徑 16 20 25 32 50 50 50 54 60 60 60 63.5 76 76 83 83 95 95 102 102 121 121 121 127 146 146 152 152 168 168 168 168 20 45 45 45 已

49、知額定壓力P=20 MPa,缸筒內(nèi)徑D=63mm,所以由表4.3可知轉(zhuǎn)向液壓缸的缸筒外徑可取76,即=76mm 則可知轉(zhuǎn)向液壓缸的缸筒壁厚 (4.10) 由表4.3也可知所選尺寸的液壓缸的材料是45鋼 4.2.3轉(zhuǎn)向液壓缸導(dǎo)向長度H、活塞寬度B和導(dǎo)向套滑動(dòng)面長度A的確定 轉(zhuǎn)向液壓缸導(dǎo)向長度H≥44mm 初選H=44mm 轉(zhuǎn)向液壓缸活塞寬度B=(0.6~1.0)D=(0.6~1.0)×63 初取B=50mm 轉(zhuǎn)向液壓缸導(dǎo)向套滑動(dòng)面長度A=(0.6~1.6)D=(0.6~1.6)×63 初取A=63mm 4.2.4轉(zhuǎn)向液壓缸

50、所受壓力的確定 油液作用在單位面積上的壓強(qiáng) (4.11) 式中  F——作用在活塞上的載荷,N; A——活塞的有效工作面積,; 其中  1.86×    F=24000N 所以 (4.12) 最高允許壓力,也是動(dòng)態(tài)試驗(yàn)壓力,是液壓缸在瞬間所能承受的極限壓力。各國規(guī)范通常規(guī)定為 耐壓試驗(yàn)壓力,是檢查液壓缸質(zhì)量時(shí)所需承受的試驗(yàn)壓力,即在此壓力下不出現(xiàn)變形、裂縫或破裂。各國規(guī)范多數(shù)規(guī)定為 所以可知計(jì)算所得的液壓缸所受的壓力

51、符合要求 4.2.5轉(zhuǎn)向液壓缸最大流量和最大速度的確定 液壓缸的最大流量     (4.13) 式中  ——液壓缸的最大速度,; ——液壓缸的有效面積,; 其中   1.86× (4.14) 液壓缸的最大流量可估算為第5章5.1.2中計(jì)算所得的液壓泵的最大流量,即   ≈=3.6或0.06× (4.15) 所以     (4.16) 4.2.6液壓缸缸筒底部厚度的確定 缸筒底部為平面時(shí),其厚度可按照四周嵌入的圓盤強(qiáng)度

52、公式進(jìn)行近似的計(jì)算 (4.17) 式中  ——筒內(nèi)最大工作壓力,MPa;  ——筒底材料許用應(yīng)力,MPa;=,為材料抗拉強(qiáng)度,n為安全系數(shù),一般取n=5; ——計(jì)算厚度外直徑,m; 其中  筒內(nèi)最大工作壓力約等于液壓泵供油壓力,即     =20 MPa 由于液壓缸的材料是45鋼,查表知45鋼的材料抗拉強(qiáng)度為600 MPa,所以 =600 MPa, 所以 = MPa (4.18)

53、 mm (4.19) 式中  D、d——液壓缸活塞直徑、活塞桿直徑,m; 所以   (4.20) 則初選 =10mm (4.21) 4.2.7液壓缸活塞往復(fù)運(yùn)動(dòng)時(shí)的速度之比的確定 液壓缸活塞往復(fù)運(yùn)動(dòng)時(shí)的速度之比 (4.22) 式中  ——活塞桿伸出速度,; ——活塞桿縮回速度,; D——液壓缸活塞直徑,; d——活塞桿直徑,; 所以

54、   (4.23) 4.2.8液壓缸活塞行程時(shí)間的確定 活塞桿伸出 (4.24) 活塞桿縮回 (4.25) 式中  Q——流量,; S——活塞行程,m; D——缸筒直徑,m; d——活塞桿直徑,m; 其中 S=250mm   Q =3.6 所以    (4.26) (4.27) 4.2.9液壓缸所做的功和功率的確定 液壓缸所做的功

55、 (4.28) 液壓缸的功率 (4.29) 式中  F——液壓缸的負(fù)載力,N; S——活塞行程,m; t——活塞運(yùn)動(dòng)時(shí)間,s; 其中 F=24000N S=250mm   t=0.46+0.78=1.24s 所以 (4.30)     (4.31

56、) 4.3 液壓缸強(qiáng)度的校核 4.3.1缸筒壁厚強(qiáng)度校核 由于﹤10 所以缸筒壁厚按厚壁進(jìn)行校核 (4.32) 式中 ——試驗(yàn)壓力。當(dāng)缸的額定壓力≤16MPa時(shí),取=1.5;當(dāng)﹥16MPa時(shí),取=1.25; D——缸筒內(nèi)徑; ——缸筒材料許用應(yīng)力,=,為材料抗拉強(qiáng)度,n為安全系數(shù), 一般取n=5; 由于=20MPa﹥16 MPa,所以取=1.25=1.25×20=25 MPa 由于液壓缸的材料是45鋼,查表知45鋼的材料抗拉強(qiáng)度為600 MPa,所以 =600 MPa, 所以= MPa 所以  ≤6.5= (4.3

57、3) 所以  成立 所以缸筒壁厚強(qiáng)度符合要求 4.3.2活塞桿強(qiáng)度校核 (4.34) 式中 F——活塞桿所受負(fù)載; ——活塞桿材料許用應(yīng)力,=,為材料抗拉強(qiáng)度,n為安全系數(shù),一般取n=1.4; 由上面式子可知=428.57 MPa 所以   40=d (4.35) 所以  成立 所以活塞桿強(qiáng)度符合要求 4.4 本章小結(jié) 本章對(duì)轉(zhuǎn)向液壓缸進(jìn)行了設(shè)計(jì)與計(jì)算,確定了轉(zhuǎn)向液壓缸的主要尺寸,包括轉(zhuǎn)向液壓缸內(nèi)徑D及活塞桿直徑d的確定;轉(zhuǎn)向液壓

58、缸外徑及缸筒壁厚的確定;轉(zhuǎn)向液壓缸導(dǎo)向長度H、活塞寬度B和導(dǎo)向套滑動(dòng)面長度A的確定;液壓缸缸筒底部厚度的確定;轉(zhuǎn)向液壓缸所受壓力的確定;轉(zhuǎn)向液壓缸最大流量和最大速度的確定;液壓缸活塞往復(fù)運(yùn)動(dòng)時(shí)的速度之比的確定;液壓缸活塞行程時(shí)間的確定;液壓缸所做的功和功率的確定。并對(duì)液壓缸強(qiáng)度的校核,包括缸筒壁厚強(qiáng)度校核,活塞桿強(qiáng)度校核。 第5章 液壓元件的選取 5.1 液壓泵的選擇 5.1.1計(jì)算液壓泵的最大工作壓力 (5.1) 式中 ——液壓缸的最大工作壓力,MPa;  ——系統(tǒng)進(jìn)油路上的總壓力損失,[可按經(jīng)驗(yàn)進(jìn)行估算,

59、簡單的系統(tǒng)取 =(0.2~0.5)×Pa]; 已知==20MPa 所以 =20 +0.5 =20.5 MPa (5.2) 5.1.2計(jì)算液壓泵的最大流量 由于所設(shè)計(jì)的液壓系統(tǒng)有多個(gè)液壓缸,所以液壓泵的最大流量為 (5.3) 式中  ——系統(tǒng)所需流量,; K——系統(tǒng)的泄漏系數(shù),一般取1.1~1.3;   ——同時(shí)動(dòng)作的液壓缸的最大流量,一般取2~3 ; 初取  K=1.2 =3 或0.05× 所以  =1.2×3=3.6 或0.06×

60、 (5.4) 5.1.3液壓泵規(guī)格的選擇 為保證液壓系統(tǒng)工作穩(wěn)定,所選液壓泵應(yīng)有較大的最大功率、容積效率和總效率,根據(jù)液壓泵的最大工作壓力和最大流量,參考機(jī)械設(shè)計(jì)手冊(cè)(第五版)第四卷 表21-5-4,最終系統(tǒng)液壓泵選擇為內(nèi)嚙合楔塊式齒輪泵。 5.1.4計(jì)算液壓泵的驅(qū)動(dòng)功率并選擇電動(dòng)機(jī) 由于工作循環(huán)中,液壓泵的壓力和流量比較恒定,所以液壓泵的驅(qū)動(dòng)功率應(yīng)按下式計(jì)算 (5.5) 式中  —— 液壓泵的最大流量,; ——液壓泵的最大工作壓力,MPa; ——液壓泵的總效率,齒輪泵一般取90%; 所以  

61、 82 W (5.6) 所以電動(dòng)機(jī)初選為型號(hào)為Y801-2的三相異步電動(dòng)機(jī)。 5.2 液壓執(zhí)行元件的選擇 5.2.1液壓缸的選擇 根據(jù)第四章中對(duì)液壓缸的設(shè)計(jì)與計(jì)算,并結(jié)合以往經(jīng)驗(yàn)對(duì)液壓缸結(jié)構(gòu)及其各部件結(jié)構(gòu)的選取如下: 1.液壓缸選為單活塞桿轉(zhuǎn)向液壓缸 2.缸筒與缸蓋的連接型式選用內(nèi)螺紋連接 3.缸筒材料選用45鋼 4.活塞結(jié)構(gòu)形式選擇整體式活塞 5.活塞與活塞桿連接形式選擇卡環(huán)連接 6.活塞密封結(jié)構(gòu)選擇O型密封圈 7.活塞材料選用45優(yōu)質(zhì)碳素鋼 8.活塞桿桿體選用實(shí)心桿 9.活塞桿材料選用45優(yōu)質(zhì)碳素鋼 10.活塞桿導(dǎo)向套

62、結(jié)構(gòu)形式選用端蓋式導(dǎo)向套 11.活塞桿導(dǎo)向套材料選用灰鑄鐵 12.活塞與活塞桿的密封件選用O型密封圈加擋圈 13.活塞桿的防塵圈選用ASW型防塵圈 5.2.2液壓馬達(dá)的選擇 根據(jù)液壓系統(tǒng)的設(shè)計(jì)要求,并結(jié)合以往經(jīng)驗(yàn),液壓馬達(dá)選?。? 四只額定壓力為16~25MPa、排量為5~25mL·、轉(zhuǎn)速為500~4000r·、輸出轉(zhuǎn)矩為17~64N·m、型號(hào)為CM5,由天津液壓機(jī)械集團(tuán)公司生產(chǎn)的齒輪式液壓馬達(dá)。 5.3液壓控制閥的選擇 由于最終選定方案三作為本次設(shè)計(jì)的液壓式四輪轉(zhuǎn)向系統(tǒng)方案,所以由圖3.3可知,液壓系統(tǒng)選擇的液壓控制閥有: 一個(gè)先導(dǎo)型電磁溢流閥、一個(gè)調(diào)速閥、兩個(gè)三位四通電液比

63、例換向閥、兩個(gè)溢流閥、四個(gè)二位四通換向閥。 所選的液壓控制閥均選擇液壓標(biāo)準(zhǔn)件控制閥。 5.4液壓輔助元件的選擇 5.4.1油箱的選擇 整體式油箱、兩用油箱和獨(dú)立郵箱是三種常見的類型,而獨(dú)立油箱應(yīng)用最為廣泛,所以本液壓系統(tǒng)選擇獨(dú)立油箱。 油箱容量的經(jīng)驗(yàn)公式為 (5.7) 式中  V——油箱的有效容積,L; ——液壓泵的總額定流量,; ——經(jīng)驗(yàn)系數(shù),對(duì)低壓系統(tǒng),=2~4,對(duì)中壓系統(tǒng),=5~7,對(duì)中、高壓或大功率系統(tǒng),=6~12; 初取 =4 所以   =4

64、×3.6=14.4L (5.8) 表5.1 液壓泵站油箱公稱容量系列(JB/T 7938-1999) 液壓泵站油箱公稱量系列(JB/T 7938-1999)/L 2.5 4.0 6.3 10 16 25 40 63 100 160 油箱的有效容積的最終確定值按上表就近圓整為標(biāo)準(zhǔn)值,所以由表5.1可知: 液壓系統(tǒng)可選擇公稱容量為16L的油箱。 5.4.2油管和油管接頭的選擇 常用的油管有硬管和軟管兩類,一般盡量選用硬管,所以本液壓

65、系統(tǒng)選用鋼管。 管道內(nèi)徑及壁厚是管道的兩個(gè)主要參數(shù),計(jì)算公式如下 (5.9) (5.10) 式中  q——通過油管的最大流量,; v——油管中允許流量,;(由于系統(tǒng)所用的是高壓管,所以v取2.5) d——油管內(nèi)徑,m; ——油管壁厚,m; p——管內(nèi)最高工作壓力,MPa; ——管材抗壓強(qiáng)度,MPa;(由于管材是45鋼,所以=600 MPa) n——安全系數(shù);(由于系統(tǒng)最高的工作壓力為20 MPa,大于17.5 MPa,所以n

66、取4) 所以     (5.11) (5.12) 表5.2 液壓系統(tǒng)用硬管外徑系列(GB/T 2351-1993) 液壓系統(tǒng)用硬管外徑系列(GB/T 2351-1993)/mm 4、5、6、8、10、12、(14)、16、(18)、20、(22)、25、(28)、32、(34)、38、40、(42)、50 液壓系統(tǒng)用硬管外徑的最終確定值按上表就近圓整為標(biāo)準(zhǔn)值,所以由表5.2可知:液壓系統(tǒng)可選擇外徑為6mm 的鋼制油管。 油管接頭選擇卡套式接頭。 5.4.3蓄能器的選擇 蓄能器的充氣壓力是蓄能器的重要參數(shù),用于蓄能的充氣壓力在等溫工作過程時(shí)按下式計(jì)算 (5.13) 式中  ——充氣壓力,MPa; ——液壓系統(tǒng)最高工作壓力,MPa; 所以   =0.5×20=10 MPa

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!