初二下學(xué)期數(shù)學(xué)練習(xí)題含答案和解析
《初二下學(xué)期數(shù)學(xué)練習(xí)題含答案和解析》由會員分享,可在線閱讀,更多相關(guān)《初二下學(xué)期數(shù)學(xué)練習(xí)題含答案和解析(19頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、... 初二下學(xué)期數(shù)學(xué)練習(xí)題 一、選擇題〔每小題3分 1.下列各數(shù)是無理數(shù)的是〔 A. B.﹣ C.π D.﹣ 2.下列關(guān)于四邊形的說法,正確的是〔 A.四個角相等的菱形是正方形B.對角線互相垂直的四邊形是菱形 C.有兩邊相等的平行四邊形是菱形 D.兩條對角線相等的四邊形是菱形 3.使代數(shù)式有意義的x的取值范圍〔 A.x>2 B.x≥2 C.x>3 D.x≥2且x≠3 4.如圖,將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A′B′C′,若∠A=45°, ∠B′=110°,則∠BCA′的度數(shù)是〔 A.55° B.75
2、° C.95° D.110° 5.已知點〔﹣3,y1,〔1,y2都在直線y=kx+2〔k<0上,則y1,y2大小關(guān)系是〔 A.y1>y2 B.y1=y2 C.y1<y2 D.不能比較 6.如圖,在四邊形ABCD中,對角線AC,BD相交于點E,∠CBD=90°,BC=4,BE=ED=3,AC=10,則四邊形ABCD的面積為〔 A.6 B.12 C.20 D.24 7.不等式組的解集是 x>2,則m的取值范圍是〔 A.m<1 B.m≥1 C.m≤1 D.m>1 8.若+|2a﹣b+1|=0,則〔b﹣a2016的值為〔 A.﹣1 B.1 C.5
3、2015 D.﹣52015 9.如圖,在方格紙中選擇標有序號①②③④的一個小正方形涂黑,使它與圖中陰影部分組成的新圖形為中心對稱圖形,該小正方形的序號是〔 A.① B.② C.③ D.④ 10.順次連接一個四邊形的各邊中點,得到了一個矩形,則下列四邊形中滿足條件的是〔 ①平行四邊形;②菱形;③矩形;④對角線互相垂直的四邊形. A.①③ B.②③ C.③④ D.②④ A B C D 第11題圖 E 11.如圖,在□ABCD中,已知AD=8㎝, AB=6㎝, DE平分∠ADC交BC邊于點E,則BE等于〔 A. 2cmB. 4cm C. 6
4、 cmD. 8cm 12.一果農(nóng)販賣的西紅柿,其重量與價錢成一次函數(shù)關(guān)系.小華向果農(nóng)買一竹籃的西紅柿,含竹籃稱得總重量為15公斤,付西紅柿的錢26元,若再加買0.5公斤的西紅柿,需多付1元,則空竹籃的重量為多少?〔 A.1.5 B.2 C.2.5 D.3 13.如圖,在?ABCD中,對角線AC與BD相交于點O,過點O作EF⊥AC交BC于點E,交AD于點F,連接AE、CF.則四邊形AECF是〔 A.梯形 B.矩形 C.菱形 D.正方形 14.已知xy>0,化簡二次根式x的正確結(jié)果為〔 A. B. C.﹣ D.﹣ 15.某商品原價500元,出售時標價為900元,要
5、保持利潤不低于26%,則至少可打〔 A.六折 B.七折 C.八折 D.九折 16.已知2+的整數(shù)部分是a,小數(shù)部分是b,則a2+b2=〔 A.13﹣2 B.9+2 C.11+ D.7+4 17.某星期天下午,小強和同學(xué)小穎相約在某公共汽車站一起乘車回學(xué)校,小強從家出發(fā)先步行到車站,等小穎到了后兩人一起乘公共汽車回學(xué)校,圖中折線表示小強離開家的路程y〔公里和所用時間x〔分之間的函數(shù)關(guān)系,下列說法中錯誤的是〔 A.小強乘公共汽車用了20分鐘 B.小強在公共汽車站等小穎用了10分鐘 C.公共汽車的平均速度是30公里/小時 D.小強從家到公共汽車站步行了
6、2公里 17.如圖,直線y=﹣x+m與y=x+3的交點的橫坐標為﹣2,則關(guān)于x的不等式﹣x+m>x+3>0的取值范圍為〔 A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣1 19.如圖,四邊形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,則DH=〔 A. B. C.12 D.24 20.如圖,正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正確結(jié)論有〔 個. A.5 B.4
7、C.3 D.2 二、填空題〔本大題共4小題,滿分12分 21.已知直線y=2x+〔3﹣a與x軸的交點在A〔2,0、B〔3,0之間〔包括A、B兩點,則a的取值范圍是. 22.如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為. 23.在下面的網(wǎng)格圖中,每個小正方形的邊長均為1,△ABC的三個頂點都是網(wǎng)格線的交點,已知B,C兩點的坐標分被為〔﹣1,﹣1,〔1,﹣2,將△ABC繞著點C順時針旋轉(zhuǎn)90°,則點A的對應(yīng)點的坐標為. 24.若關(guān)于x的不等式組有4個整數(shù)解,則a的取
8、值范圍是. 三、解答題〔本大題共5個小題,共48分 25.〔1計算 〔+1〔﹣1++﹣3 〔2解不等式組,并在數(shù)軸上表示它的解集 解不等式組,并把它們的解集表示在數(shù)軸上. 26.如圖,直線l1的解析式為y=﹣x+2,l1與x軸交于點B,直線l2經(jīng)過點D〔0,5,與直線l1交于點 C〔﹣1,m,且與x軸交于點A 〔1求點C的坐標及直線l2的解析式; 〔2求△ABC的面積. 27.如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF. 〔1證明:BD=CD;
9、 〔2當△ABC滿足什么條件時,四邊形AFBD是矩形?并說明理由. 28.如圖,點P是正方形ABCD內(nèi)一點,點P到點A、B和D的距離分別為1,2,,△ADP沿點A旋轉(zhuǎn)至△ABP′,連結(jié)PP′,并延長AP與BC相交于點Q. 〔1求證:△APP′是等腰直角三角形; 〔2求∠BPQ的大?。? 29.小穎到運動鞋店參加社會實踐活動,鞋店經(jīng)理讓小穎幫助解決以下問題:運動鞋店準備購進甲乙兩種運動鞋,甲種每雙進價80元,售價120元;乙種每雙進價60元,售價90元,計劃購進兩種運動鞋共100雙,其中甲種運動鞋不少于65雙. 〔1若購進這100雙運動鞋的費用不得超
10、過7500元,則甲種運動鞋最多購進多少雙? 〔2在〔1條件下,該運動鞋店在6月19日"父親節(jié)"當天對甲種運動鞋以每雙優(yōu)惠a〔0<a<20元的價格進行優(yōu)惠促銷活動,乙種運動鞋價格不變,請寫出總利潤w與a的函數(shù)關(guān)系式,若甲種運動鞋每雙優(yōu)惠11元,那么該運動鞋店應(yīng)如何進貨才能獲得最大利潤? 2015-2016學(xué)年XX省XX市新泰市八年級〔下期末數(shù)學(xué)試卷 參考答案與試題解析 一、選擇題〔每小題3分 1.下列各數(shù)是無理數(shù)的是〔 A. B.﹣ C.π D.﹣ [考點]無理數(shù). [分析]根據(jù)無理數(shù)的判定條件判斷即可. [解答]解: =2,
11、是有理數(shù),﹣ =﹣2是有理數(shù), ∴只有π是無理數(shù), 故選C. [點評]此題是無理數(shù)題,熟記無理數(shù)的判斷條件是解本題的關(guān)鍵. 2.下列關(guān)于四邊形的說法,正確的是〔 A.四個角相等的菱形是正方形 B.對角線互相垂直的四邊形是菱形 C.有兩邊相等的平行四邊形是菱形 D.兩條對角線相等的四邊形是菱形 [考點]多邊形. [分析]根據(jù)菱形的判斷方法、正方形的判斷方法逐項分析即可. [解答]解:A、四個角相等的菱形是正方形,正確; B、對角線互相平分且垂直的四邊形是菱形,錯誤; C、鄰邊相等的平行四邊
12、形是菱形,錯誤; D、兩條對角線平分且垂直的四邊形是菱形,錯誤; 故選A [點評]本題考查了對菱形、正方形性質(zhì)與判定的綜合運用,特殊四邊形之間的相互關(guān)系是考查重點. 3.使代數(shù)式有意義的x的取值范圍〔 A.x>2 B.x≥2 C.x>3 D.x≥2且x≠3 [考點]二次根式有意義的條件;分式有意義的條件. [分析]分式有意義:分母不為0;二次根式有意義,被開方數(shù)是非負數(shù). [解答]解:根據(jù)題意,得 , 解得,x≥2且x≠3. 故選D. [點評]本題考查了二次根式有意義的條件、分式有意義的條件.概念:式
13、子〔a≥0叫二次根式.性質(zhì):二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義. 4.如圖,將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A′B′C′,若∠A=45°,∠B′=110°,則∠BCA′的度數(shù)是〔 A.55° B.75° C.95° D.110° [考點]旋轉(zhuǎn)的性質(zhì). [分析]根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠B=∠B′,然后利用三角形內(nèi)角和定理列式求出∠ACB,再根據(jù)對應(yīng)邊AC、A′C的夾角為旋轉(zhuǎn)角求出∠ACA′,然后根據(jù)∠BCA′=∠ACB+∠ACA′計算即可得解. [解答]解:∵△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A′B′C′, ∴∠B=∠B
14、′=110°,∠ACA′=50°, 在△ABC中,∠ACB=180°﹣∠A﹣∠B=180°﹣45°﹣110°=25°, ∴∠BCA′=∠ACB+∠ACA′=50°+25°=75°. 故選B. [點評]本題考查了旋轉(zhuǎn)的性質(zhì),三角形的內(nèi)角和定理,熟記旋轉(zhuǎn)變換的對應(yīng)的角相等,以及旋轉(zhuǎn)角的確定是解題的關(guān)鍵. 5.已知點〔﹣3,y1,〔1,y2都在直線y=kx+2〔k<0上,則y1,y2大小關(guān)系是〔 A.y1>y2 B.y1=y2 C.y1<y2 D.不能比較 [考點]一次函數(shù)圖象上點的坐標特征. [分析]直線系數(shù)k<0,可知y隨x的增大而減
15、小,﹣3<1,則y1>y2. [解答]解:∵直線y=kx+2中k<0, ∴函數(shù)y隨x的增大而減小, ∵﹣3<1, ∴y1>y2. 故選A. [點評]本題考查的是一次函數(shù)的性質(zhì).解答此題要熟知一次函數(shù)y=kx+b:當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減?。? 6.如圖,在四邊形ABCD中,對角線AC,BD相交于點E,∠CBD=90°,BC=4,BE=ED=3,AC=10,則四邊形ABCD的面積為〔 A.6 B.12 C.20 D.24 [考點]平行四邊形的判定與性質(zhì);全等三角形的判定與性質(zhì);勾股定理.
16、 [分析]根據(jù)勾股定理,可得EC的長,根據(jù)平行四邊形的判定,可得四邊形ABCD的形狀,根據(jù)平行四邊形的面積公式,可得答案. [解答]解:在Rt△BCE中,由勾股定理,得 CE===5. ∵BE=DE=3,AE=CE=5, ∴四邊形ABCD是平行四邊形. 四邊形ABCD的面積為BCBD=4×〔3+3=24, 故選:D. [點評]本題考查了平行四邊形的判定與性質(zhì),利用了勾股定理得出CE的長,又利用對角線互相平分的四邊形是平行四邊形,最后利用了平行四邊形的面積公式. 7.不等式組的解集是 x>2,則m的取值范圍是〔 A.m
17、<1 B.m≥1 C.m≤1 D.m>1 [考點]解一元一次不等式組;不等式的性質(zhì);解一元一次不等式. [分析]根據(jù)不等式的性質(zhì)求出不等式的解集,根據(jù)不等式組的解集得到2≥m+1,求出即可. [解答]解:, 由①得:x>2, 由②得:x>m+1, ∵不等式組的解集是 x>2, ∴2≥m+1, ∴m≤1, 故選C. [點評]本題主要考查對解一元一次不等式〔組,不等式的性質(zhì)等知識點的理解和掌握,能根據(jù)不等式的解集和已知得出2≥m+1是解此題的關(guān)鍵. 8.若+|2a﹣b+1|=0,則〔b﹣a2016的值為〔
18、 A.﹣1 B.1 C.52015 D.﹣52015 [考點]非負數(shù)的性質(zhì):算術(shù)平方根;非負數(shù)的性質(zhì):絕對值. [分析]首先根據(jù)非負數(shù)的性質(zhì),幾個非負數(shù)的和是0,則每個非負數(shù)等于0列方程組求得a和b的值,然后代入求解. [解答]解:根據(jù)題意得:, 解得:, 則〔b﹣a2016=〔﹣3+22016=1. 故選B. [點評]本題考查了非負數(shù)的性質(zhì),幾個非負數(shù)的和是0,則每個非負數(shù)等于0,正確解方程組求得a和b的值是關(guān)鍵. 9.如圖,在方格紙中選擇標有序號①②③④的一個小正方形涂黑,使它與圖中陰影部分組成的新圖形為中心對稱圖形,該小正方形的序
19、號是〔 A.① B.② C.③ D.④ [考點]中心對稱圖形. [分析]根據(jù)中心對稱圖形的特點進行判斷即可. [解答]解:應(yīng)該將②涂黑. 故選B. [點評]本題考查了中心對稱圖形的知識,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合. 10.順次連接一個四邊形的各邊中點,得到了一個矩形,則下列四邊形中滿足條件的是〔 ①平行四邊形;②菱形;③矩形;④對角線互相垂直的四邊形. A.①③ B.②③ C.③④ D.②④ [考點]中點四邊形. [分析]有一個角是直角的平行四邊形是矩形,根據(jù)此可知順次連接對角線垂直
20、的四邊形是矩形. [解答]解:AC⊥BD,E,F,G,H是AB,BC,CD,DA的中點, ∵EH∥BD,FG∥BD, ∴EH∥FG, 同理;EF∥HG, ∴四邊形EFGH是平行四邊形. ∵AC⊥BD, ∴EH⊥EF, ∴四邊形EFGH是矩形. 所以順次連接對角線垂直的四邊形是矩形. 而菱形、正方形的對角線互相垂直,則菱形、正方形均符合題意. 故選:D. [點評]本題考查矩形的判定定理和三角形的中位線的定理,從而可求解. 11.已知a,b,c為△ABC三邊,且滿足〔a2﹣b2〔a2+b2﹣c2
21、=0,則它的形狀為〔 A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰三角形或直角三角形 [考點]等腰直角三角形. [分析]首先根據(jù)題意可得〔a2﹣b2〔a2+b2﹣c2=0,進而得到a2+b2=c2,或a=b,根據(jù)勾股定理逆定理可得△ABC的形狀為等腰三角形或直角三角形. [解答]解:〔a2﹣b2〔a2+b2﹣c2=0, ∴a2+b2﹣c2,或a﹣b=0, 解得:a2+b2=c2,或a=b, ∴△ABC的形狀為等腰三角形或直角三角形. 故選D. [點評]此題主要考查了勾股定理逆定理以及非負數(shù)的性質(zhì),關(guān)
22、鍵是掌握勾股定理的逆定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形. 12.已知果農(nóng)販賣的西紅柿,其重量與價錢成一次函數(shù)關(guān)系.今小華向果農(nóng)買一竹籃的西紅柿,含竹籃稱得總重量為15公斤,付西紅柿的錢26元,若他再加買0.5公斤的西紅柿,需多付1元,則空竹籃的重量為多少公斤?〔 A.1.5 B.2 C.2.5 D.3 [考點]一次函數(shù)的應(yīng)用. [分析]設(shè)價錢y與重量x之間的函數(shù)關(guān)系式為y=kx+b,由〔15,26、〔15.5,27利用待定系數(shù)法即可求出該一次函數(shù)關(guān)系式,令y=0求出x值,即可得出空藍的重量. [解答]解:設(shè)
23、價錢y與重量x之間的函數(shù)關(guān)系式為y=kx+b, 將〔15,26、〔15.5,27代入y=kx+b中, 得:,解得:, ∴y與x之間的函數(shù)關(guān)系式為y=2x﹣4. 令y=0,則2x﹣4=0, 解得:x=2. 故選B. [點評]本題考查了待定系數(shù)法求函數(shù)解析式,解題的關(guān)鍵是求出價錢y與重量x之間的函數(shù)關(guān)系式.本題屬于基礎(chǔ)題,難度不大,根據(jù)給定條件利用待定系數(shù)法求出函數(shù)關(guān)系式是關(guān)鍵. 13.如圖,在?ABCD中,對角線AC與BD相交于點O,過點O作EF⊥AC交BC于點E,交AD于點F,連接AE、CF.則四邊形AECF是〔 A.
24、梯形 B.矩形 C.菱形 D.正方形 [考點]菱形的判定;平行四邊形的性質(zhì). [分析]首先利用平行四邊形的性質(zhì)得出AO=CO,∠AFO=∠CEO,進而得出△AFO≌△CEO,再利用平行四邊形和菱形的判定得出即可. [解答]解:四邊形AECF是菱形, 理由:∵在?ABCD中,對角線AC與BD相交于點O, ∴AO=CO,∠AFO=∠CEO, ∴在△AFO和△CEO中 , ∴△AFO≌△CEO〔AAS, ∴FO=EO, ∴四邊形AECF平行四邊形, ∵EF⊥AC, ∴平行四邊形AECF是菱形. 故選:C
25、. [點評]此題主要考查了菱形的判定以及平行四邊形的判定與性質(zhì),根據(jù)已知得出EO=FO是解題關(guān)鍵. 14.已知xy>0,化簡二次根式x的正確結(jié)果為〔 A. B. C.﹣ D.﹣ [考點]二次根式的性質(zhì)與化簡. [分析]二次根式有意義,y<0,結(jié)合已知條件得y<0,化簡即可得出最簡形式. [解答]解:根據(jù)題意,xy>0, 得x和y同號, 又x中,≥0, 得y<0, 故x<0,y<0, 所以原式====﹣. 故答案選D. [點評]主要考查了二次根式的化簡,注意開平方的結(jié)果為非負數(shù). 15.
26、某星期天下午,小強和同學(xué)小穎相約在某公共汽車站一起乘車回學(xué)校,小強從家出發(fā)先步行到車站,等小穎到了后兩人一起乘公共汽車回學(xué)校,圖中折線表示小強離開家的路程y〔公里和所用時間x〔分之間的函數(shù)關(guān)系,下列說法中錯誤的是〔 A.小強乘公共汽車用了20分鐘 B.小強在公共汽車站等小穎用了10分鐘 C.公共汽車的平均速度是30公里/小時 D.小強從家到公共汽車站步行了2公里 [考點]函數(shù)的圖象. [分析]直接利用函數(shù)圖象進而分析得出符合題意跌答案. [解答]解:A、小強乘公共汽車用了60﹣30=30〔分鐘,故此選項錯誤; B、小強在公共汽
27、車站等小穎用了30﹣20=10〔分鐘,正確; C、公共汽車的平均速度是:15÷0.5=30〔公里/小時,正確; D、小強從家到公共汽車站步行了2公里,正確. 故選:A. [點評]此題主要考查了函數(shù)圖象,正確利用圖象得出正確信息是解題關(guān)鍵. 16.某商品原價500元,出售時標價為900元,要保持利潤不低于26%,則至少可打〔 A.六折 B.七折 C.八折 D.九折 [考點]由實際問題抽象出一元一次不等式. [分析]由題意知保持利潤不低于26%,就是利潤大于等于26%,列出不等式. [解答]解:設(shè)打折為x, 由題意知,
28、 解得x≥7, 故至少打七折,故選B. [點評]要抓住關(guān)鍵詞語,弄清不等關(guān)系,把文字語言的不等關(guān)系轉(zhuǎn)化為用數(shù)學(xué)符號表示的不等式. 17.如圖,直線y=﹣x+m與y=x+3的交點的橫坐標為﹣2,則關(guān)于x的不等式﹣x+m>x+3>0的取值范圍為〔 A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣1 [考點]一次函數(shù)與一元一次不等式. [分析]解不等式x+3>0,可得出x>﹣3,再根據(jù)兩函數(shù)圖象的上下位置關(guān)系結(jié)合交點的橫坐標即可得出不等式﹣x+m>x+3的解集,結(jié)合二者即可得出結(jié)論. [解答]解:∵x+3>0 ∴x>
29、﹣3; 觀察函數(shù)圖象,發(fā)現(xiàn): 當x<﹣2時,直線y=﹣x+m的圖象在y=x+3的圖象的上方, ∴不等式﹣x+m>x+3的解為x<﹣2. 綜上可知:不等式﹣x+m>x+3>0的解集為﹣3<x<﹣2. 故選C. [點評]本題考查了一次函數(shù)與一元一次不等式,解題的關(guān)鍵是根據(jù)函數(shù)圖象的上下位置關(guān)系解不等式﹣x+m>x+3.本題屬于基礎(chǔ)題,難度不大,解集該題型題目時,根據(jù)函數(shù)圖象的上下位置關(guān)鍵解不等式是關(guān)鍵. 18.已知2+的整數(shù)部分是a,小數(shù)部分是b,則a2+b2=〔 A.13﹣2 B.9+2 C.11+ D.7+4 [考點]估算無
30、理數(shù)的大小. [分析]先估算出的大小,從而得到a、b的值,最后代入計算即可. [解答]解:∵1<3<4, ∴1<<2. ∴1+2<2+<2+2,即3<2+<4. ∴a=3,b=﹣1. ∴a2+b2=9+3+1﹣2=13﹣2. 故選:A. [點評]本題主要考查的是估算無理數(shù)的大小,根據(jù)題意求得a、b的值是解題的關(guān)鍵. 19.如圖,四邊形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,則DH=〔 A. B. C.12 D.24 [考點]菱形的性質(zhì). [分析]設(shè)對角線相交于點O,根據(jù)菱形的對角線互相垂直
31、平分求出AO、BO,再利用勾股定理列式求出AB,然后根據(jù)菱形的面積等對角線乘積的一半和底乘以高列出方程求解即可. [解答]解:如圖,設(shè)對角線相交于點O, ∵AC=8,DB=6, ∴AO=AC=×8=4, BO=BD=×6=3, 由勾股定理的,AB===5, ∵DH⊥AB, ∴S菱形ABCD=ABDH=ACBD, 即5DH=×8×6, 解得DH=. 故選A. [點評]本題考查了菱形的性質(zhì),勾股定理,主要利用了菱形的對角線互相垂直平分的性質(zhì),難點在于利用菱形的面積的兩種表示方法列出方程. 20.如圖,正
32、方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正確結(jié)論有〔 個. A.5 B.4 C.3 D.2 [考點]正方形的性質(zhì);全等三角形的判定與性質(zhì);等邊三角形的性質(zhì). [分析]由正方形和等邊三角形的性質(zhì)得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,①正確;②正確;由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,③正確;設(shè)EC=x,由勾股定理和三角函數(shù)就可以表示出BE與EF,得出④錯誤;由三角形
33、的面積得出⑤錯誤;即可得出結(jié)論. [解答]解:∵四邊形ABCD是正方形, ∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°. ∵△AEF等邊三角形, ∴AE=EF=AF,∠EAF=60°. ∴∠BAE+∠DAF=30°. 在Rt△ABE和Rt△ADF中,, ∴Rt△ABE≌Rt△ADF〔HL, ∴BE=DF〔故①正確. ∠BAE=∠DAF, ∴∠DAF+∠DAF=30°, 即∠DAF=15°〔故②正確, ∵BC=CD, ∴BC﹣BE=CD﹣DF,即CE=CF, ∵AE
34、=AF, ∴AC垂直平分EF.. 設(shè)EC=x,由勾股定理,得EF=x,CG=x, AG=AEsin60°=EFsin60°=2×CGsin60°=x, ∴AC=, ∴AB=, ∴BE=AB﹣x=, ∴BE+DF=x﹣x≠x,〔故④錯誤, ∵S△AEC=CEAB,S△ABC=BCAB,CE<BC, ∴S△AEC<S△ABC,故⑤錯誤; 綜上所述,正確的有①②③, 故選:C. [點評]本題考查了正方形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,勾股定理的運用,等邊三角形的性質(zhì)的運用,三角形的面積公式的運
35、用,解答本題時運用勾股定理的性質(zhì)解題時關(guān)鍵. 二、填空題〔本大題共4小題,滿分12分 21.已知直線y=2x+〔3﹣a與x軸的交點在A〔2,0、B〔3,0之間〔包括A、B兩點,則a的取值范圍是 7≤a≤9 . [考點]一次函數(shù)圖象上點的坐標特征. [分析]根據(jù)題意得到x的取值范圍是2≤x≤3,則通過解關(guān)于x的方程2x+〔3﹣a=0求得x的值,由x的取值范圍來求a的取值范圍. [解答]解:∵直線y=2x+〔3﹣a與x軸的交點在A〔2,0、B〔3,0之間〔包括A、B兩點, ∴2≤x≤3, 令y=0,則2x+〔3﹣a=0, 解得x=,
36、 則2≤≤3, 解得7≤a≤9. 故答案是:7≤a≤9. [點評]本題考查了一次函數(shù)圖象上點的坐標特征.根據(jù)一次函數(shù)解析式與一元一次方程的關(guān)系解得x的值是解題的突破口. 22.如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為 2. [考點]軸對稱-最短路線問題;正方形的性質(zhì). [分析]由于點B與D關(guān)于AC對稱,所以連接BD,與AC的交點即為F點.此時PD+PE=BE最小,而BE是等邊△ABE的邊,BE=AB,由正方形ABCD的面積為12,可求出A
37、B的長,從而得出結(jié)果. [解答]解:連接BD,與AC交于點F. ∵點B與D關(guān)于AC對稱, ∴PD=PB, ∴PD+PE=PB+PE=BE最小. ∵正方形ABCD的面積為12, ∴AB=2. 又∵△ABE是等邊三角形, ∴BE=AB=2. 故所求最小值為2. 故答案為:2. [點評]此題主要考查軸對稱﹣﹣最短路線問題,要靈活運用對稱性解決此類問題. 23.在下面的網(wǎng)格圖中,每個小正方形的邊長均為1,△ABC的三個頂點都是網(wǎng)格線的交點,已知B,C兩點的坐標分被為〔﹣1,﹣1,〔1,﹣2,將△ABC繞著點
38、C順時針旋轉(zhuǎn)90°,則點A的對應(yīng)點的坐標為 〔5,﹣1 . [考點]坐標與圖形變化-旋轉(zhuǎn). [分析]先利用B,C兩點的坐標畫出直角坐標系得到A點坐標,再畫出△ABC繞點C順時針旋轉(zhuǎn)90°后點A的對應(yīng)點的A′,然后寫出點A′的坐標即可. [解答]解:如圖,A點坐標為〔0,2, 將△ABC繞點C順時針旋轉(zhuǎn)90°,則點A的對應(yīng)點的A′的坐標為〔5,﹣1. 故答案為:〔5,﹣1. [點評]本題考查了坐標與圖形變化:圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標.常見的是旋轉(zhuǎn)特殊角度如:30°,45°,60°,90°,180°.
39、 24.若關(guān)于x的不等式組有4個整數(shù)解,則a的取值范圍是 ﹣≤a<﹣. [考點]一元一次不等式組的整數(shù)解. [分析]首先確定不等式組的解集,先利用含a的式子表示,根據(jù)整數(shù)解的個數(shù)就可以確定有哪些整數(shù)解,根據(jù)解的情況可以得到關(guān)于a的不等式,從而求出a的范圍. [解答]解:, 由①得,x>8, 由②得,x<2﹣4a, ∵此不等式組有解集, ∴解集為8<x<2﹣4a, 又∵此不等式組有4個整數(shù)解, ∴此整數(shù)解為9、10、11、12, ∵x<2﹣4a,x的最大整數(shù)值為12, ,∴12<2﹣4a≤13,
40、∴﹣≤a<﹣. [點評]本題是一道較為抽象的中考題,利用數(shù)軸就能直觀的理解題意,列出關(guān)于a的不等式組,臨界數(shù)的取舍是易錯的地方,要借助數(shù)軸做出正確的取舍. 三、解答題〔本大題共5個小題,共48分 25.〔1計算 〔+1〔﹣1++﹣3 〔2解不等式組,并在數(shù)軸上表示它的解集 解不等式組,并把它們的解集表示在數(shù)軸上. [考點]二次根式的混合運算;在數(shù)軸上表示不等式的解集;解一元一次不等式組. [分析]〔1利用平方差公式、二次根式的性質(zhì)化簡計算即可; 〔2利用解一元一次不等式組的一般步驟解出不等式組,把解集在數(shù)軸上表示出來.
41、[解答]解:〔1原式=〔2﹣12++×3﹣3× =3﹣1++﹣2 =2+; 〔2, 解①得,x<2, 解②得,x≥﹣1, 則不等式組的解集為:﹣1≤x<2. [點評]本題考查的是二次根式的混合運算、一元一次不等式組的解法,掌握二次根式的和和運算法則、一元一次不等式組的解法是解題的關(guān)鍵. 26.如圖,直線l1的解析式為y=﹣x+2,l1與x軸交于點B,直線l2經(jīng)過點D〔0,5,與直線l1交于點C〔﹣1,m,且與x軸交于點A 〔1求點C的坐標及直線l2的解析式; 〔2求△ABC的面積. [考點]兩條直線相交或平行問題.
42、 [分析]〔1首先利用待定系數(shù)法求出C點坐標,然后再根據(jù)D、C兩點坐標求出直線l2的解析式; 〔2首先根據(jù)兩個函數(shù)解析式計算出A、B兩點坐標,然后再利用三角形的面積公式計算出△ABC的面積即可. [解答]解:〔1∵直線l1的解析式為y=﹣x+2經(jīng)過點C〔﹣1,m, ∴m=1+2=3, ∴C〔﹣1,3, 設(shè)直線l2的解析式為y=kx+b, ∵經(jīng)過點D〔0,5,C〔﹣1,3, ∴, 解得, ∴直線l2的解析式為y=2x+5; 〔2當y=0時,2x+5=0, 解得x=﹣, 則A〔﹣,0, 當y
43、=0時,﹣x+2=0 解得x=2, 則B〔2,0, △ABC的面積:×〔2+×3=. [點評]此題主要考查了待定系數(shù)法求一次函數(shù)解析式,關(guān)鍵是掌握凡是函數(shù)圖象經(jīng)過的點必能滿足解析式. 27.如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF. 〔1證明:BD=CD; 〔2當△ABC滿足什么條件時,四邊形AFBD是矩形?并說明理由. [考點]全等三角形的判定與性質(zhì);矩形的判定. [分析]〔1由AF與BC平行,利用兩直線平行內(nèi)錯角相等得到一對角相等,再一對對
44、頂角相等,且由E為AD的中點,得到AE=DE,利用AAS得到三角形AFE與三角形DCE全等,利用全等三角形的對應(yīng)邊相等即可得證; 〔2當△ABC滿足:AB=AC時,四邊形AFBD是矩形,理由為:由AF與BD平行且相等,得到四邊形AFBD為平行四邊形,再由AB=AC,BD=CD,利用三線合一得到AD垂直于BC,即∠ADB為直角,即可得證. [解答]解:〔1∵AF∥BC, ∴∠AFE=∠DCE, ∵E為AD的中點, ∴AE=DE, 在△AFE和△DCE中, , ∴△AFE≌△DCE〔AAS, ∴AF=CD, ∵AF=B
45、D, ∴CD=BD; 〔2當△ABC滿足:AB=AC時,四邊形AFBD是矩形, 理由如下:∵AF∥BD,AF=BD, ∴四邊形AFBD是平行四邊形, ∵AB=AC,BD=CD, ∴∠ADB=90°, ∴四邊形AFBD是矩形. [點評]此題考查了全等三角形的判定與性質(zhì),以及矩形的判定,熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵. 28.如圖,點P是正方形ABCD內(nèi)一點,點P到點A、B和D的距離分別為1,2,,△ADP沿點A旋轉(zhuǎn)至△ABP′,連結(jié)PP′,并延長AP與BC相交于點Q. 〔1求證:△APP′是等腰直角三角
46、形; 〔2求∠BPQ的大?。? [考點]旋轉(zhuǎn)的性質(zhì);等腰直角三角形;正方形的性質(zhì). [分析]〔1根據(jù)正方形的性質(zhì)得AB=AD,∠BAD=90°,再利用旋轉(zhuǎn)的性質(zhì)得AP=AP′,∠PAP′=∠DAB=90°,于是可判斷△APP′是等腰直角三角形; 〔2根據(jù)等腰直角三角形的性質(zhì)得PP′=PA=,∠APP′=45°,再利用旋轉(zhuǎn)的性質(zhì)得PD=P′B=,接著根據(jù)勾股定理的逆定理可證明△PP′B為直角三角形,∠P′PB=90°,然后利用平角定義計算∠BPQ的度數(shù). [解答]〔1證明:∵四邊形ABCD為正方形, ∴AB=AD,∠BAD=90°, ∵△AD
47、P沿點A旋轉(zhuǎn)至△ABP′, ∴AP=AP′,∠PAP′=∠DAB=90°, ∴△APP′是等腰直角三角形; 〔2解:∵△APP′是等腰直角三角形, ∴PP′=PA=,∠APP′=45°, ∵△ADP沿點A旋轉(zhuǎn)至△ABP′, ∴PD=P′B=, 在△PP′B中,PP′=,PB=2,P′B=, ∵〔2+〔22=〔2, ∴PP′2+PB2=P′B2, ∴△PP′B為直角三角形,∠P′PB=90°, ∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°. [點評]本題考查了旋轉(zhuǎn)的性
48、質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了正方形的性質(zhì)和勾股定理的逆定理. 29.小穎到運動鞋店參加社會實踐活動,鞋店經(jīng)理讓小穎幫助解決以下問題:運動鞋店準備購進甲乙兩種運動鞋,甲種每雙進價80元,售價120元;乙種每雙進價60元,售價90元,計劃購進兩種運動鞋共100雙,其中甲種運動鞋不少于65雙. 〔1若購進這100雙運動鞋的費用不得超過7500元,則甲種運動鞋最多購進多少雙? 〔2在〔1條件下,該運動鞋店在6月19日"父親節(jié)"當天對甲種運動鞋以每雙優(yōu)惠a〔0<a<20元的價格進行優(yōu)惠促銷活動,乙種運動鞋
49、價格不變,請寫出總利潤w與a的函數(shù)關(guān)系式,若甲種運動鞋每雙優(yōu)惠11元,那么該運動鞋店應(yīng)如何進貨才能獲得最大利潤? [考點]一次函數(shù)的應(yīng)用;一元一次不等式的應(yīng)用;一次函數(shù)的性質(zhì). [分析]〔1設(shè)購進甲種運動鞋x雙,根據(jù)題意列出關(guān)于x的一元一次不等式,解不等式得出結(jié)論; 〔2找出總利潤w關(guān)于購進甲種服裝x之間的關(guān)系式,根據(jù)一次函數(shù)的性質(zhì)判斷如何進貨才能獲得最大利潤. [解答]解:〔1設(shè)購進甲種運動鞋x雙,由題意可知: 80x+60〔100﹣x≤7500, 解得:x≤75. 答:甲種運動鞋最多購進75雙. 〔2因為甲種運動鞋不少于65雙,所以65≤x≤75, 總利潤w=〔120﹣80﹣ax+〔90﹣60〔100﹣x=〔10﹣ax+3000, ∵當10<a<20時,10﹣a<0,w隨x的增大而減少, ∴當x=65時,w有最大值,此時運動鞋店應(yīng)購進甲種運動鞋65雙,乙種運動鞋35雙. [點評]本題主要考查了一次函數(shù)的應(yīng)用和解一元一次不等式,解題的關(guān)鍵是:根據(jù)題意列出關(guān)于x的一元一次不等式,找出利潤w關(guān)于x的關(guān)系式.在一次函數(shù)y=kx+b中,當k<0時,y隨x的增大而減小,這是判斷的依據(jù). 19 / 19
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024《增值稅法》全文學(xué)習(xí)解讀(規(guī)范增值稅的征收和繳納保護納稅人的合法權(quán)益)
- 2024《文物保護法》全文解讀學(xué)習(xí)(加強對文物的保護促進科學(xué)研究工作)
- 銷售技巧培訓(xùn)課件:接近客戶的套路總結(jié)
- 20種成交的銷售話術(shù)和技巧
- 銷售技巧:接近客戶的8種套路
- 銷售套路總結(jié)
- 房產(chǎn)銷售中的常見問題及解決方法
- 銷售技巧:值得默念的成交話術(shù)
- 銷售資料:讓人舒服的35種說話方式
- 汽車銷售績效管理規(guī)范
- 銷售技巧培訓(xùn)課件:絕對成交的銷售話術(shù)
- 頂尖銷售技巧總結(jié)
- 銷售技巧:電話營銷十大定律
- 銷售逼單最好的二十三種技巧
- 銷售最常遇到的10大麻煩