滅火器筒座注塑模具設計(畢業(yè)設計)
滅火器筒座注塑模具設計(畢業(yè)設計),滅火器,注塑,模具設計,畢業(yè)設計
I nt e grate d s i mu l ati on of t he i nj e c t i on mold i ng pr oce s swi t h s t e r e oli t hography molds Ab s t r act F u nct i onal par t s a r e nee ded f or des i gn v e r i fi c a t i on t e s t i ng fi e l d t r i a l s c ust om e r e val uat i on a nd product i o n pla n ning B y e l i m i na t i ng m ult i ple s t e ps t he c r e a t i on o f t he i nje c t i on m old dir e c t l y by a r a pid prototyping R P proce s s holds t he bes t prom i s e of r e duci ng t he t i m e a nd c ost n e e ded t o m old l ow v olum e qua nt i t i e s of par t s T he pote nti a l of t his i nte gr a t i o n of i nje c t i on m olding w i t h R P h a s bee n dem onst r a t e d m a ny t i m e s What i s m i s s i ng i s t he f undam e nt a l under s t a nding of h ow t he m odi fi c a t i o ns t o t he m old m a t e r i a l a nd R P m a nufa c t uri ng proce s s i m pac t both t he m old des i gn a n d t he i nje c t i on m old i ng proce s s I n a ddit i on n um e r i c a l s i m ula t i o n t e c hniq ues h a ve nowbec om e hel pful t ools of m old des i gner s a nd proce s s e ngi ne e r s f or t r a dit i o nal i nje c t i on m olding B ut a l l c u r r e nt s i m ula t i on pac kag e s f or c onventi o nal i nje c t i on m olding a r e no l onger a p p l i c a ble t o t his new t ype o f i nje c t i on m olds m a i nly bec a use t he proper t y o f t he m old m a t e r i a l c h a nges gre a t l y I n t his paper a n i nte gr a t e d a pproac h t o a c c om pli s h a n um e r i c a l s i m ula t i on of i n j e c t i on m olding i nto r a pid protot yped m olds i s e s t a bli s hed a nd a c orr e s ponding s i m ula t i on s yst e m i s devel oped C om par i s ons w i t h e x per i m e nta l r e s ult s a r e e m ployed f or v e r i fi c a t i o n w hic h s h ow t hat t he pre s e nt s c hem e i s w e l l s u i t e d t o handle R P f a bri c a t e d s t e r e oli t hogra phy S L m olds K e yword sK K K I n j e c t i on m olding N u m e r i c a l s i m ula t i on R a pid protot yping 1 I n t r odu c t i on I n i nje c t i on m old i ng t he polym e r m e l t a t high t e m pe r a t ur e i s i nje c t e d i nto t he m old u nder high pre s s ur e 1 T hus t he m old m a t e r i a l n e e ds t o have t h e r m a l a nd m e c hanic a l proper t i e s c a pa b l e o f w i t hst a nding t he t e m pe r a t ur e s a nd pre s s ur e s of t he m old i ng c y c l e T he f ocus of m a ny s t udie s has bee n t o c r e a t e t he i nje c t i on m old dir e c t l y by a r a pid protot yping R P proce s s B y e l i m i na t i ng m ult i ple s t e ps t h i s m e t hod of t ooli ng h old s t he bes t prom i s e of r e duci ng t he t i m e a nd c ost nee ded t o c r e a t e l ow v olum e quanti t i e s of par t s i n a product i o n m a t e r i a l T he pote nti a l of i nte gr a t i ng i nje c t i on m olding w i t h R P t e c hnologie s ha s bee n dem onst r a t e d m a ny t i m e s T he proper t i e s of R P m olds a r e v e r y dif f e r e nt f r om t hose of t r a dit i o nal m e t a l m olds T he key dif f e r e nce s a r e t he proper t i e s of t her m a l c onduct i vit y a n d e l a s t i c m od ulus r i gid i t y F or e xam ple t he polym e r s u s e d i n R P f a bri c a t e d s t e r e oli t hogra phy S L m olds h a ve a t her m a l c onduct i vit y t hat i s l e s s t han one t housa ndth t hat of a n a l um i num t ool I n usi ng R P t e c hnolo gie s t o c r e a t e m olds t he e nti r e m old des i gn a n d i nje c t i on m old i ng proce s s par a m e t e r s nee d t o be m odi fi e d a nd opti m i z e d f r om t r a dit i o nal m e t hodolo gie s due t o t he c om ple t e l y dif f e r e nt t ool m a t e r i a l H owe ver t her e i s s t i l l no t a f undam e n t a l under s t a nding of howt he m odi fi c a t i ons t o t he m old t ooli ng m e t hod a nd m a t e r i a l i m pac t both t he m old des i gn a nd t he i nje c t i on m olding proce s s par a m e t e r s O n e c a nnotobta i n r e a s onable r e s ult s b y s i m ply c hanging a f e w m a t e r i a l proper t i e s i n c urr e nt m odel s A l s o u s i ng t r a dit i o nal a pproac hes w hen m a king a c t ual par t s m a y be g e ner a t i ng s ub opti m a l r e s ult s S o t her e i s a dir e n e e d t o s t udy t he i nte r a c t i o n bet w e e n t he r a pid t ooli ng R T pro c e s s a nd m a t e r i a l a n d i nje c t i on m olding s o a s t o e s t a bli s h t he m old des i gn c r i t e r i a a nd t e c hniq ues f or a n R T ori e nte d i nje c t i on m olding proce s s I n a ddit i on c om pute r s i m ula t i on i s a n e f f e c t i ve a pproac h f or pre dic t i ng t he qual i t y of m olded par t s C om m e r c i a l l y a vai l a ble s i m ula t i on pac kages of t he t r a dit i o nal i nje c t i on m olding proce s s have n ow bec om e r outi ne t ools o f t he m old des i gner a nd pro c e s s e n gine e r 2 U nfor t unat e l y c urr e nt s i m ula t i o n progra m s f or c onventi o nal i nje c t i on m olding a r e no l onger a ppli c a ble t o R P m olds bec a use of t he dra m a t i c a l l y dis s i m i l a r t ool m a t e r i a l F or i nst a nce i n usi ng t h e e xis t i ng s i m ula t i on s oft w a r e w i t h a l u m i num a n d S L m olds a n d c om par i ng w i t h e xper i m e nta l r e s ult s t hought he s i m ula t i on val ues of par t dis t ort i o n a r e r e a s onable f or t he a l um i num m old r e s ult s a r e u nac c e pta ble w i t h t he e r r or e xce e ding 50 T he dis t ort i o n dur i ng i nje c t i on m old i ng i s due t o s hri nk a ge a nd w a r page of t he pla s t i c par t a s w e l l a s t he m old F or ordinar i l y m olds t he m a i n f a c t or i s t he s h r i nkage a n d w a r pa ge of t he pla s t i c par t w hic h i s m odel e d a c c ura t e l y i n c ur r e nt s i m ula t i ons B ut f or R P m old s t he dis t or t i o n of t he m old h a s pote nti a l l y m ore i n fl uence w hic h have bee n negle c t e d i n c urr e nt m odel s F or i nst a nce 3 use d a s i m p l e t hre e s t e p s i m ula t i on proce s s t o c onsi der t he m old dis t or t i on w hic h had t oo m uch devia t i on I n t his paper bas e d on t h e a bove a nal ysi s a new s i m ula t i o n s yst e m f or R P m olds i s dev e l oped T he propose d s y s t e m f ocus e s on pre dic t i ng par t dis t ort i o n w hic h i s domi nat i ng def e c t i n R P m olded par t s T he dev e l oped s i m ula t i on c a n be a ppli e d a s a n e v a l ua t i o n t ool f or R P m old des i gn a n d proce s s opti m i z a t i on O u r s i m ula t i o n s yst e m i s ver i fi e d b y a n e xper i m e nta l e x a m p l e A l t hough m a ny m a t e r i a l s a r e a vai l a ble f or use i n R P t e c h no l ogie s w e c once ntr a t e o n u s i ng s t e r e oli t ho gra phy S L t he ori gina l R P t e c hnology t o c r e a t e polym e r m olds T he S L pro c e s s use s photopolym e r a n d l a s e r e ner gy t o buil d a par t l a yer b y l a yer U s i ng S L t a kes a dvanta ge of both t he c om m e r c i a l domi na nce o f S L i n t he R P i ndust r y a nd t he s ubse quent e xper t i s e bas e t hat has bee n dev e l oped f or c r e a t i ng a c c ura t e high qua l i t y par t s U n t i l r e c e nt l y S L w a s pri m a r i l y u s e d t o c r e a t e physi c a l m odel s f or vis ual i nspec t i on a nd f or m fi t s t udie s w i t h ver y l i m i t e d f unc t i o nal a ppli c a t i o ns H owe ver t he new e r gener a t i on s t e r e oli t ho gr a phic photopolym e r s h a ve i m pr oved dim e ns i onal m e c hanic a l a nd t her m a l proper t i e s m a king i t poss i ble t o u s e t hem f or a c t ual f unct i o nal m olds 2 I n t e grate d s i mu l ati on of t he mold i n g p r oce s s 2 1 Me t h o d o l o g y I n order t o s i m ula t e t he use of a n S L m old i n t he i nje c t i on m olding proce s s a n i t e r a t i ve m e t hod i s propose d D i f f e r e nt s oft w a r e m odule s h a ve bee n dev e l oped a nd use d t o a c c om pli s h t his t a s k T he m a i n a s s um pt i on i s t hat t e m pe r a t ur e a n d l oad bound a r y c ondit i o ns c a u s e s i gnifi c a nt dis t ort i o ns i n t he S L m old T he s i m ula t i o n s t e ps a r e a s f oll o w s 1 T he par t g e om e t r y i s m odel e d a s a s oli d m odel w hic h i s t r a ns l a t e d t o a fi l e r e a dable by t he fl ow a nal ysi s pac kag e 2 S i m ula t e t he m old fi l l i n g proce s s of t he m e l t i nto a pho t opolym e r m old w hic h w i l l out put t he r e s ult i ng t e m pe r a t ur e a n d pre s s ur e pro fi l e s 3 S t r uct ura l a nal ysi s i s t hen per f orm e d on t he photopolym e r m old m odel usi ng t he t her m a l a nd l oad boundar y c ondit i o ns obta i ned f r om t he pre v i o us s t e p w hic h c a l c ula t e s t he dis t or t i o n t hat t he m old under go dur i ng t he i nje c t i on proce s s 4 I f t h e dis t ort i o n of t he m old c onver ges m ove t o t he next s t e p O t h e r w i s e t he dis t or t e d m old c a vit y i s t hen m odel e d c hanges i n t he dim e ns i ons of t he c a vit y a f t e r dis t ort i o n a nd r e t ur ns t o t he s e c ond s t e p t o s i m ula t e t he m e l t i nje c t i on i nto t he dis t ort e d m old 5 T he s hri nk a ge a n d w a r pa ge s i m ula t i on of t he i nje c t i on m olded par t i s t hen a ppli e d w hic h c a l c ula t e s t he fi na l dis t or t i o ns of t he m olded par t I n a boves i m ula t i on fl ow t h e r e a r e t hre e bas i c s i m ula t i o n m od ule s 2 2 F i l l i n g s i m u l a t i o n o f t h e m e l t 2 2 1 Ma t h e m a t i c a l m o d e l i n g I n order t o s i m ula t e t he use of a n S L m old i n t he i nje c t i on m olding proce s s a n i t e r a t i ve m e t hod i s propose d D i f f e r e nt s oft w a r e m odule s h a ve bee n devel oped a nd use d t o a c c om pli s h t his t a s k T he m a i n a s s um pt i on i s t hat t e m pe r a t ur e a n d l oad boundar y c ondit i ons c a use s i gnif i c a nt dis t or t i o ns i n t he S L m old T he s i m ula t i o n s t e ps a r e a s f oll o w s 1 T he par t geom e t r y i s m odel e d a s a s oli d m odel w hic h i s t r a ns l a t e d t o a f i l e r e a dable by t he f l o w a nal ysi s pac kag e 2 S i m ula t e t he m old f i l l i ng proce s s of t he m e l t i nto a photopolym e r m old w hic h w i l l out put t he r e s ult i ng t e m pe r a t ur e a n d pre s s ur e profi l e s 3 S t r uct ura l a n a l ysi s i s t hen per f orm e d o n t he phot opolym e r m old m odel u s i ng t he t her m a l a n d l oad boundar y c ondit i ons obta i ne d f r om t he pre vious s t e p w hic h c a l c ula t e s t he dis t or t i on t hat t he m old under go dur i ng t h e i nje c t i on proce s s 4 I f t he dis t ort i o n of t he m old c onve r ges m ove t o t he n e xt s t e p O t her w i s e t he dis t ort e d m old c a vit y i s t h e n m odel e d c hanges i n t he dim e ns i ons of t he c a v i t y a f t e r dis t ort i o n a nd r e t ur ns t o t he s e c ond s t e p t o s i m ula t e t he m e l t i nje c t i on i nto t he dis t ort e d m old 5 T he s hri nk a ge a nd w a r page s i m ula t i on o f t he i nje c t i on m olded par t i s t hen a ppli e d w hic h c a l c ula t e s t he f i nal dis t ort i o ns o f t he m old e d par t I n a boves i m ula t i on f l ow t her e a r e t hre e bas i c s i m ula t i o n m odule s 2 2 F i l l i n g s i m u l a t i o n o f t h e m e l t 2 2 1 Ma t h e m a t i c a l m o d e l i n g C om pute r s i m ula t i on t e c hniques h a ve had s ucc e s s i n pre dic t i ng f i l l i n g behavior i n e x t r e m e l y c om pli c a t e d g e om e t r i e s H owe ver m ost of t he c urr e nt n um e r i c a l i m ple m e nt a t i o n i s bas e d o n a hybri d f i nit e e l e m e nt f i nit e dif f e r e nc e s olut i on w i t h t he m i ddle pla ne m odel T he a ppli c a t i o n proce s s o f s i m ula t i on pac kages bas e d o n t his m odel i s i l l us t r a t e d i n F i g 2 1 H owe ver u nli k e t he s urf a c e s oli d m odel i n m old des i gn C A D s yst e m s t he s o c a l l e d m i ddle pla ne a s s h own i n F i g 2 1 b i s a n i m a gina r y a r bit r a r y pla nar geom e t r y a t t he m i ddle of t he c a vit y i n t he g a p w i s e dir e c t i on w hic h s hould bri ng a boutgre a t i nconvenie nce i n a ppli c a t i ons F or e xam ple s urf a c e m odel s a r e c om m only u s e d i n c urr e nt R P s yst e m s gener a l l y S T L f i l e f orm a t s o s e c ondar y m odel i ng i s u navoid a ble w hen u s i ng s i m ula t i on pac kages bec a use t he m odel s i n t he R P a nd s i m ula t i on s yst e m s a r e dif f e r e nt C ons i d e r i ng t hes e def e c t s t he s urf a c e m odel of t he c a v i t y i s i ntr oduce d a s dat um pla nes i n t he s i m ula t i o n i nst e a d of t he m i d dle pla ne A c c or ding t o t he pre vious i nves t i gat i ons 4 6 f i l l i nggover ning e qua t i ons f or t he f l ow a nd t e m pe r a t ur e f i e l d c a n be w r i t t e n a s w her e x y a r e t he pla nar c oordinat e s i n t he m i ddle pla ne a n d z i s t he g a p w i s e c oordinat e u v w a r e t he v e l o c i t y c om ponent s i n t he x y z dir e c t i ons u v a r e t he a ver a ge w hole gap t hic knes s e s a n d CP T K T r e pre s e nt vis c os i t y densi t y s pec i f i c h e a t a nd t her m a l c onduct i vit y of polym e r m e l t r e s pec t i vel y Fi g 2 1 a d S c hem a t i c pr oce dure of t he s i m ul a t i on w i t h m i ddle pl a ne m odel a T he 3 D s urf a c e m odel b T he m i ddle pl a ne m odel c T he m e s hed m i ddle pl a ne m odel d T he dis pl a y of t he s i m ul a t i on r e s ult I n a ddit i o n boundar y c ondit i o ns i n t he g a p w i s e dir e c t i on c a n be def i ned a s w her e T W i s t he c onst a nt w a l l t e m pe r a t ur e s hown i n F i g 2a C om bining E qs 1 4 w i t h E qs 5 6 i t f oll o w s t hat t h e dis t r i buti ons of t h e u v T P a t z c oordinat e s s hould be s ym m e t r i c a l w i t h t he m i r r or a xis bei ng z 0 a nd c onse quentl y t he u v a ver a ged i n hal f gap t hic knes s i s e qual t o t hat a v e r a ged i n w hole gap t hic knes s B a s e d o n t his c har a c t e r i s t i c w e c a n divide t he w hole c a v i t y i nto t w o e qual par t s i n t he g a p w i s e dir e c t i on a s des c r i b e d by P art I a n d P art I I i n F i g 2b A t t he s a m e t i m e t r i a ngula r f i nit e e l e m e nt s a r e gener a t e d i n t he s urf a c e s of t he c a vit y a t z 0 i n F i g 2b i nst e a d o f t he m i ddle pla ne a t z 0 i n F i g 2a A c c or dingly f i nit e dif f e r e nce i ncr e m e nts i n t he gapwi s e dir e c t i on a r e e m ployed only i n t he i nsi de of t he s urf a c e s w a l l t o m i ddle c e nte r l i ne w hic h i n F i g 2b m e a ns f r om z 0 t o z b T his i s s i ngle s i ded i ns t e a d of t w o s i ded w i t h r e s pec t t o t he m i ddle pla ne i e f r om t he m i ddle l i ne t o t w o w a l l s I n a ddit i o n t he c oordinat e s yst e m i s c h a nged f r om F i g 2a t o F i g 2b t o a l t e r t he f i nit e e l e m e nt f i nit e dif f e r e nce s c hem e a s s hown i n F i g 2b Wi t h t he a bovea djust m e nt gover ning e qua t i ons a r e s t i l l E qs 1 4 H owe ver t he ori gina l boundar y c ondit i o ns i n t he gapwi s e dir e c t i on a r e r e w r i t t e n a s Me a nwhil e a ddit i o nal boundar y c ondit i o ns m ust be e m ployed a t z b i n order t o kee p t he f l ows a t t he j unct ur e of t h e t w o par t s a t t he s a m e s e c t i o n c oordinat e 7 w her e s u bsc r i pt s I I I r e pre s e nt t he par a m e t e r s o f P art I a nd P art I I r e s pec t i ve l y a nd C m I a n d C m I I i ndic a t e t h e m oving f r e e m e l t f r onts of t he s u r f a c e s of t he divided t w o par t s i n t h e f i l l i ng s t a ge I t s h ould be note d t hat u nli k e c ondit i o ns E qs 7 a nd 8 e nsuri ng c ondit i o ns E qs 9 a nd 10 a r e uphel d i n nume r i c a l i m p l e m e nta t i ons bec om e s m ore dif f i c ult due t o t he f oll o w i ng r e a s ons 1 T he s urf a c e s a t t he s a m e s e c t i o n h a ve bee n m e s hed r e s pec t i vel y w hic h l e a ds t o a dis t i nct i ve pat t e r n of f i nit e e l e m e nts a t t he s a m e s e c t i o n T hus a n i nte r pola t i on oper a t i o n s hould be e m ployed f or u v T P duri ng t he c om par i s on bet w e e n t he t w o par t s a t t he j unct ur e 2 B e c a us e t he t w o par t s h a ve r e s pec t i ve f l o w f i e l d s w i t h r e s pec t t o t he n odes a t point A a nd point C a s s hown i n F i g 2b a t t he s a m e s e c t i o n i t i s poss i ble t o have e i t he r both f i l l e d or one f i l l e d a nd one e m pty T hes e t w o c a s e s s hould be h a ndle d s e par a t e l y a ver a ging t he oper a t i o n f or t he f or m e r w her e a s a s s i gning oper a t i o n f or t he l a t t e r 3 I t f oll o w s t hat a s m a l l dif f e r e nce bet w e e n t he m e l t f r onts i s per m i s s i ble T hat a l l owa nce c a n be i m ple m e nt e d b y t i m e a l l owa nce c ontr ol or pre f e r a ble l oca t i on a l l owa nce c ont r ol of t he m e l t f r ont n odes 4 T he boundar i e s of t he f l ow f i e l d e xpand b y e a c h m e l t f r ont a dvance m e nt s o i t i s n e c e s s a r y t o c hec k t he c ondit i o n E q 10 a f t e r e a c h c hange i n t he m e l t f r ont 5 I n v i e w of a bove m e nti oned a n a l ys i s t he physi c a l par a m e t e r s a t t he n odes of t he s a m e s e c t i o n s h ould be c om par e d a nd a djust e d s o t he i nform a t i o n des c r i bing f i nit e e l e m e nts of t he s a m e s e c t i o n s hould be pre par e d bef ore s i m ula t i on t hat i s t he m a t c hing oper a t i on a m ong t he e l e m e nts s hould be pre f orm e d Fi g 2a b I l l us t r a t i ve of boundar y c ondit i ons i n t he gap w i s e dir e c t i on a of t he m i ddle pl a ne m odel b of t he s ur f a c e m odel 2 2 2 N u m e r i c a l i m p l e m e n t a t i o n P r e s s ure f i e l d I n m odel i ng vis c os i t y w hic h i s a f unct i o n o f s h e a r r a t e t e m pe r a t ur e a nd pre s s ure o f m e l t t he s h e a r t hinning beh a vior c a n be w e l l r e pre s e nte d by a c r oss t ype m odel s uch a s w her e n c orr e s pondst o t he powe r l a w i ndex a n d c h a r a c t e r i z e s t he s h e a r s t r e s s l e vel of t he t r a nsi t i o n r e gion bet w e e n t he N e w t onia n a n d powe r l a w a s y m p t ot i c l i m i t s I n t e r m s of a n A r r henius t ype t e m per a t ur e s e nsi t i vit y a nd e xponenti a l pre s s ure dependence 0 T P c a n be r e pre s e nt e d w i t h r e a s onable a c c ura c y a s f oll o w s E quat i ons 11 a n d 12 c onst i t ut e a f i ve c onst a nt n B T b r e pre s e nt a t i o n f or v i s c osi t y T he s hea r r a t e f or v i s c osi t y c a l c ula t i on i s obta i ned b y B a s e d on t he a bove w e c a n i nfe r t he f oll o w i ng f i l l i ng pre s s ure e quat i o n f r om t he gover ning E qs 1 4 w her e S i s c a l c ula t e d b y S b 0 b z 2 d z A pplying t he G a l e r kin m e t hod t he pre s s ur e f i nit e e l e m e nt e quat i o n i s deduc e d a s w her e l t r a ver s e s a l l e l e m e nts i ncl uding n ode N a nd w her e I a nd j r e pre s e nt t he l oca l node n um b e r i n e l e m e nt l c orr e s ponding t o t he n ode number N a nd N i n t he w hole r e s pec t i vel y T he D l i j i s c a l c ula t e d a s f oll o w s w her e A l r e pre s e nts t r i a ngula r f i nit e e l e m e nts a nd L l i i s t he pre s s ur e t r i a l f unct i o n i n f i nit e e l e m e nts T e mper ature f i e l d T o det e r m i ne t he t e m pe r a t ur e profi l e a c r oss t he gap e a c h t r i a ngula r f i nit e e l e m e nt a t t he s u r f a c e i s f urt her divided i nt o NZ l a yer s f or t he f i nit e dif f e r e nce g r i d T he l e f t i t e m o f t he e ner
收藏
資源目錄
編號:7039688
類型:共享資源
大?。?span id="k09xzwy" class="font-tahoma">7.05MB
格式:ZIP
上傳時間:2020-03-11
50
積分
- 關 鍵 詞:
-
滅火器
注塑
模具設計
畢業(yè)設計
- 資源描述:
-
滅火器筒座注塑模具設計(畢業(yè)設計),滅火器,注塑,模具設計,畢業(yè)設計
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。