《(江蘇專版)2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第2部分 八大難點(diǎn)突破 難點(diǎn)5 復(fù)雜數(shù)列的通項(xiàng)公式與求和問(wèn)題學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《(江蘇專版)2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第2部分 八大難點(diǎn)突破 難點(diǎn)5 復(fù)雜數(shù)列的通項(xiàng)公式與求和問(wèn)題學(xué)案(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
難點(diǎn)五 復(fù)雜數(shù)列的通項(xiàng)公式與求和問(wèn)題
(對(duì)應(yīng)學(xué)生用書第71頁(yè))
數(shù)列在高考中占重要地位,應(yīng)當(dāng)牢記等差、等比的通項(xiàng)公式,前n項(xiàng)和公式,等差、等比數(shù)列的性質(zhì),以及常見(jiàn)求數(shù)列通項(xiàng)的方法,如累加、累乘、構(gòu)造等差、等比數(shù)列法、取倒數(shù)等.?dāng)?shù)列求和問(wèn)題中,對(duì)于等差數(shù)列、等比數(shù)列的求和主要是運(yùn)用公式;而非等差數(shù)列、非等比數(shù)列的求和問(wèn)題,一般用倒序相加法、通項(xiàng)化歸法、錯(cuò)位相減法、裂項(xiàng)相消法、分組求和法等.?dāng)?shù)列的求和問(wèn)題多從數(shù)列的通項(xiàng)入手,通過(guò)分組、錯(cuò)位相減等轉(zhuǎn)化為等差或等比數(shù)列的求和問(wèn)題,考查等差、等比數(shù)列求和公式及轉(zhuǎn)化與化歸思想的應(yīng)用,屬中檔題.
一、數(shù)列的通項(xiàng)公式
數(shù)列的通項(xiàng)公式在數(shù)列中占有重要
2、地位,是數(shù)列的基礎(chǔ)之一,在高考中,等差數(shù)列和等比數(shù)列的通項(xiàng)公式,前n項(xiàng)和公式以及它們的性質(zhì)是必考內(nèi)容,一般以填空題的形式出現(xiàn),屬于低中檔題,若數(shù)列與函數(shù)、不等式、解析幾何、向量、三角函數(shù)等知識(shí)點(diǎn)交融,難度就較大,也是近幾年命題的熱點(diǎn).
1.由數(shù)列的遞推關(guān)系求通項(xiàng)
由遞推關(guān)系求數(shù)列的通項(xiàng)的基本思想是轉(zhuǎn)化,常用的方法:
(1)an+1-an=f (n)型,采用疊加法.
(2)=f (n)型,采用疊乘法.
(3)an+1=pan+q(p≠0,p≠1)型,轉(zhuǎn)化為等比數(shù)列解決.
2.由Sn與an的關(guān)系求通項(xiàng)an
Sn與an的關(guān)系為:an=
【例1】 (2017·江蘇省南京市迎一模模擬)已
3、知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(2n+1)an+2n+1,數(shù)列{bn}的前n項(xiàng)和為Tn,求滿足不等式>2 010的n的最小值.
[解] (1)證明:當(dāng)n=1時(shí),2a1=a1+1,∴a1=1.
∵2an=Sn+n,n∈N*,∴2an-1=Sn-1+n-1,n≥2,
兩式相減得an=2an-1+1,n≥2,即an+1=2(an-1+1),n≥2,
∴數(shù)列{an+1}為以2為首項(xiàng),2為公比的等比數(shù)列,
∴an+1=2n,∴an=2n-1,n∈N*;
(2)bn=
4、(2n+1)an+2n+1=(2n+1)·2n,
∴Tn=3·2+5·22+…+(2n+1)·2n,
∴2Tn=3·22+5·23+…+(2n+1)·2n+1,
兩式相減可得-Tn=3·2+2·22+2·23+…+2·2n-(2n+1)·2n+1,
∴Tn=(2n-1)·2n+1+2,
∴>2 010可化為2n+1>2 010,
∵210=1 024,211=2 048
∴滿足不等式>2 010的n的最小值為10.
[點(diǎn)評(píng)] 利用an=Sn-Sn-1求通項(xiàng)時(shí),注意n≥2這一前提條件,易忽略驗(yàn)證n=1致誤,當(dāng)n=1時(shí),a1若適合通項(xiàng),則n=1的情況應(yīng)并入n≥2時(shí)的通項(xiàng);否則an應(yīng)
5、利用分段函數(shù)的形式表示.
二、數(shù)列的求和
常見(jiàn)類型及方法
(1)an=kn+b,利用等差數(shù)列前n項(xiàng)和公式直接求解;
(2)an=a·qn-1,利用等比數(shù)列前n項(xiàng)和公式直接求解;
(3)an=bn±cn,數(shù)列{bn},{cn}是等比數(shù)列或等差數(shù)列,采用分組求和法求{an}的前n項(xiàng)和;
(4)an=bn·cn,數(shù)列{bn},{cn}分別是等比數(shù)列和等差數(shù)列,采用錯(cuò)位相減法求和.
【例2】 (揚(yáng)州市2017屆高三上學(xué)期期末)已知數(shù)列{an}與{bn}的前n項(xiàng)和分別為An和Bn,且對(duì)任意n∈N*,an+1-an=2(bn+1-bn)恒成立.
(1)若An=n2,b1=2,求Bn;
(
6、2)若對(duì)任意n∈N*,都有an=Bn及+++…+<成立,求正實(shí)數(shù)b1的取值范圍;
(3)若a1=2,bn=2n,是否存在兩個(gè)互不相等的整數(shù)s,t(1<s<t),使,,成等差數(shù)列?若存在,求出s,t的值;若不存在,請(qǐng)說(shuō)明理由.
【導(dǎo)學(xué)號(hào):56394102】
[解] (1)因?yàn)锳n=n2,所以an=
即an=2n-1,
故bn+1-bn=(an+1-an)=1,所以數(shù)列{bn}是以2為首項(xiàng),1為公差的等差數(shù)列,
所以Bn=n·2+·n·(n-1)·1=n2+n.
(2)依題意Bn+1-Bn=2(bn+1-bn),即bn+1=2(bn+1-bn),即=2,
所以數(shù)列{bn}是以b1
7、為首項(xiàng),2為公比的等比數(shù)列,所以an=Bn=×b1=b1(2n-1),
所以=,
因?yàn)椋?
=
所以+++…+
=,所以<恒成立,
即b1>3,所以b1≥3.
(3)由an+1-an=2(bn+1-bn)得:an+1-an=2n+1,
所以當(dāng)n≥2時(shí),an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1
=2n+2n-1+…+23+22+2=2n+1-2,
當(dāng)n=1時(shí),上式也成立,
所以An=2n+2-4-2n,又Bn=2n+1-2,
所以==2-,
假設(shè)存在兩個(gè)互不相等的整數(shù)s,t(1<s<t),使,,成等差數(shù)列,
等價(jià)于,,成
8、等差數(shù)列,即=+,
即=1+,因?yàn)?+>1,所以>1,即2s<2s+1,
令h(s)=2s-2s-1(s≥2,s∈N*),則h(s+1)-h(huán)(s)=2s-2>0所以h(s)遞增,
若s≥3,則h(s)≥h(3)=1>0,不滿足2s<2s+1,所以s=2,
代入=+得2t-3t-1=0(t≥3),
當(dāng)t=3時(shí),顯然不符合要求;
當(dāng)t≥4時(shí),令φ(t)=2t-3t-1(t≥4,t∈N*),則同理可證φ(t)遞增,所以φ(t)≥φ(4)=3>0,
所以不符合要求.
所以,不存在正整數(shù)s,t(1<s<t),使,,成等差數(shù)列.
[點(diǎn)評(píng)] 裂項(xiàng)相消法求和就是將數(shù)列中的每一項(xiàng)裂成兩項(xiàng)或多項(xiàng),使這些裂開(kāi)的項(xiàng)出現(xiàn)有規(guī)律的相互抵消,要注意消去了哪些項(xiàng),保留了哪些項(xiàng).從而達(dá)到求和的目的.要注意的是裂項(xiàng)相消法的前提是數(shù)列中的每一項(xiàng)均可分裂成一正一負(fù)兩項(xiàng),且在求和過(guò)程中能夠前后相互抵消.
4