《云南省2018年中考數(shù)學總復習第三章函數(shù)第五節(jié)二次函數(shù)綜合題好題隨堂演練》由會員分享,可在線閱讀,更多相關《云南省2018年中考數(shù)學總復習第三章函數(shù)第五節(jié)二次函數(shù)綜合題好題隨堂演練(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第三章 函數(shù)
好題隨堂演練
1.(2018·威海)為了支持大學生創(chuàng)業(yè),某市政府出臺了一項優(yōu)惠政策:提供10萬元的無息創(chuàng)業(yè)貸款.小王利用這筆貸款,注冊了一家淘寶網(wǎng)店,招收5名員工,銷售一種火爆的電子產品,并約定用該網(wǎng)店經營的利潤,逐月償還這筆無息貸款,已知該產品的成本為每件4元,員工每人每月的工資為4千元,該網(wǎng)店還需每月支付其他費用1萬元.該產品每月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關系如圖所示.
(1)求該網(wǎng)店每月利潤w(萬元)與銷售單價x(元)之間的函數(shù)表達式;
(2)小王自網(wǎng)店開業(yè)起,最快在第幾個月可還清10萬元的無息貸款?
2、2.(2017·昆明)如圖,拋物線y=ax2+bx過點B(1,-3),對稱軸是直線x=2,且拋物線與x軸的正半軸交于點A.
(1)求拋物線的解析式,并根據(jù)圖象直接寫出當y≤0時,自變量x的取值范圍;
(2)在第二象限內的拋物線上有一點P,當PA⊥BA時,求△PAB的面積.
參考答案
1.解:(1)設直線AB的解析式為:y=kx+b,
代入A(4,4),B(6,2)得
解得
∴直線AB的解析式為:y=-x+8(4≤x≤6),
同理代入B(6,2),C(8,1)可得直線BC的解析式為:y=-x+5(6<x≤
3、8),
∵工資及其它費用為:0.4×5+1=3(萬元),
∴當4≤x≤6時,w1=(x-4)(-x+8)-3=-x2+12x-35,
當6<x≤8時,w2=(x-4)(-x+5)-3=-x2+7x-23;
(2)當4≤x≤6時,
w1=-x2+12x-35=-(x-6)2+1,
∴當x=6時,w1取最大值是1,
當6<x≤8時,
w2=-x2+7x-23=-(x-7)2+,
當x=7時,w2取最大值是1.5,
∵1.5>1,
∴==6,
即最快在第7個月可還清10萬元的無息貸款.
2.【分析】 (1)將函數(shù)圖象經過的點B坐標代入函數(shù)解析式中,再和對稱軸方程聯(lián)立求出待
4、定系數(shù)a和b;(2)將AB所在的直線的解析式求出,利用直線AP與AB垂直的關系求出直線AP的解析式,再求直線AP與拋物線的交點,求點P的坐標,將△PAB的面積構造成幾何圖形面積差求解.
解:(1)由題意得,,
解得
∴拋物線的解析式為y=x2-4x,
令y=0,得x2-4x=0,解得x=0或4,
結合圖象知,A點坐標為(4,0),
根據(jù)圖象開口向上,則y≤0時,自變量x的取值范圍是0≤x≤4;
(2)設直線AB的解析式為y1=mx+n,
則
解得
∴y1=x-4,
設直線AP的解析式為y2=kx+c,
∵PA⊥BA,∴k=-1,
則有(-1)×4+c=0,解得c=4,
∴y2=-x+4,
∴
解得或
∵點P在第二象限,
∴點P的坐標為(-1,5),
∴S△PAB=(3+8)×5×-×3×3-×2×8=15.