汽車主減速器結(jié)構(gòu)設(shè)計含NX三維圖
汽車主減速器結(jié)構(gòu)設(shè)計含NX三維圖,汽車,減速器,結(jié)構(gòu)設(shè)計,nx,三維
摘 要
主減速器是汽車總成中重要傳動結(jié)構(gòu)之一,位于汽車傳動系的末端,其基本功用首先是增扭、降速,改變轉(zhuǎn)矩的傳遞方向,即增大由傳動軸或直接從變速器傳來的轉(zhuǎn)矩,并將轉(zhuǎn)矩合理的分配給左、右驅(qū)動車輪;所以主減速器結(jié)構(gòu)形式和設(shè)計參數(shù)直接影響汽車的動力性、燃油經(jīng)濟性、可靠性和汽車的使用壽命。
本次課題設(shè)計是參考傳統(tǒng)的主減速器的設(shè)計方法進行輕型貨車的主減速器設(shè)計。首先通過已知的汽車相關(guān)參數(shù),確定驅(qū)動橋整體方案,包括驅(qū)動總成結(jié)構(gòu)形式為整體式驅(qū)動橋,選擇主減速器結(jié)構(gòu)形式為單級主減速器,主減速器傳動形式選擇雙曲面錐齒輪傳動,主減速器主動錐齒輪選擇懸臂式支承,從動錐齒輪跨置式支承,接下來是對主減速器殼等不需要計算的零件設(shè)計,但必須要滿足汽車的使用要求。最后利用三維建模軟件繪制零件三維圖并進行裝配。
關(guān)鍵詞:主減速器;雙曲面錐齒輪;建模
Abstract
The main reducer, one of the most important transmission structures in the automobile assembly, is located at the end of the automobile transmission system. The basic function is to increase the torque and reduce the transmission direction of the torque, that is to increase the torque transmitted from the transmission shaft or directly from the transmission, and to allocate the torque to the left and right wheels, so the main reducer is connected. The configuration and design parameters directly affect the power performance, fuel economy, reliability and service life of vehicle.
The design of this project is to design the main reducer of light truck by referring to the design method of the traditional main reducer. First of all, through the known automobile related parameters, the overall scheme of the drive bridge is determined, including the drive assembly structure as the integral drive bridge, and the main reducer is selected as the single stage main reducer. The main reducer drives the double curved bevel gear transmission, the main reducer chooses the cantilever support and the driven cone. The gears are cross supported, then the parts such as main reducer shell and so on do not need to be calculated, but they must meet the requirements of vehicle use. Finally, 3D modeling software is used to draw 3D parts and assemble them.
Key words: main reducer, hyperboloid bevel gear, modeling
目 錄
摘 要 I
Abstract II
1 緒 論 1
1.1 課題的設(shè)計任務(wù) 1
1.2 主減速器的國內(nèi)外發(fā)展概況 1
1.3 課題的技術(shù)路線 2
2 總體方案的設(shè)計 3
2.1 主減速器結(jié)構(gòu)形式的選擇 3
2.2 主減速器支承形式的選擇 3
2.2.1 主動錐齒輪的支承形式 3
2.2.2 從動錐齒輪支承 4
2.3 傳動形式的選擇 4
3 主減速器齒輪副設(shè)計 7
3.1 傳動系載荷的計算 7
3.2 主減速器齒輪的設(shè)計計算 8
3.2.1 主從動錐齒輪齒數(shù)的選擇 8
3.2.2 從動錐齒輪節(jié)圓直徑及端面模數(shù)的計算 8
3.2.3 主從動錐齒輪的齒面寬度計算 9
3.2.4 齒輪的偏移計算 9
3.2.5 螺旋角的選擇 9
3.2.6 法向壓力角的選擇 9
3.2.7 雙曲面齒輪幾何尺寸計算結(jié)果 9
3.3 齒輪的強度計算及校核 18
3.3.1 單位齒長圓周力的計算 18
3.3.2 輪齒彎曲強度校核 19
3.3.3 輪齒接觸強度校核 21
3.3.4 錐齒輪材料及熱處理 22
3.4 主減速器齒輪的三維建模 23
4 減速器軸承的選擇 25
4.1 軸承支承受力分析 25
4.2 軸承選擇 28
4.2.1 軸承類型選擇 28
4.2.2 軸承型號選擇 29
4.2.3 軸承壽命校核 31
4.3 軸承的設(shè)計結(jié)果 31
5 主減速器預(yù)緊裝置設(shè)計 32
5.1.1 軸承的預(yù)緊 32
5.1.2 錐齒輪的調(diào)整 33
結(jié) 論 35
致 謝 36
參考文獻 37
1 緒 論
1.1 課題的設(shè)計任務(wù)
根據(jù)選擇車型的基本參數(shù)通過查閱圖書館資料及實際生產(chǎn)實習(xí),完成主減速器的設(shè)計計算;完成主減速器總成的設(shè)計。要求使用UG軟件完成主減速器的三維設(shè)計,完成設(shè)計說明書。
1.2 主減速器的國內(nèi)外發(fā)展概況
當(dāng)前我國汽車零配件行業(yè)現(xiàn)狀主要表現(xiàn)為:一是零部件企業(yè)普遍呈現(xiàn)散、弱、小的特點,國內(nèi)零部件企業(yè)共有兩萬多家,其中中等規(guī)模以上汽車零部件企業(yè)近8000家,并且90%集中在低端。零部件企業(yè)缺少自主知識產(chǎn)權(quán)的核心技術(shù),極大的制約了汽車工業(yè)的自主創(chuàng)新和自主開發(fā);二是汽車零部件行業(yè)相對于整車制造行業(yè)投入小,但是行業(yè)整體的盈利能力比汽車整車制造行業(yè)好;三是汽車零部件企業(yè)主要為汽車整車制造廠配套生產(chǎn),普遍采用OEM訂單方式生產(chǎn),與整車廠商關(guān)聯(lián)度緊密,形成以整車廠商為龍頭,零部件企業(yè)為依托的產(chǎn)業(yè)集群。
主減速器行業(yè)的發(fā)展依賴于商用車行業(yè)的發(fā)展,近些年商用車市場形式良好,尤其是重卡市場更是推動了主減速器行業(yè)的迅速發(fā)展,各生產(chǎn)廠家已經(jīng)形成了系列化、批量化、專業(yè)化的生產(chǎn)格局。近幾年來,國內(nèi)各主減速器公司引進國外技術(shù)或自主研發(fā)各種用于重型汽車的主減速器,有些已被廣泛應(yīng)用。
目前,國內(nèi)主減速器市場可謂競爭激烈。在以前,國內(nèi)商用車整車生產(chǎn)企業(yè)的發(fā)展戰(zhàn)略是車身必須自己生產(chǎn),發(fā)動機爭取自己生產(chǎn),而主減速器一般采用社會資源。然而隨著近些年商用車市場競爭激烈,為了在核心總成上不受制于人,近些年,國內(nèi)一汽解放、東風(fēng)汽車和中國重汽等主要商用車企業(yè)有的采取投巨資、重兵布局發(fā)展自己的主減速器業(yè)務(wù)方式,有的采取積極主動與有關(guān)大型齒輪生產(chǎn)企業(yè)建立長期戰(zhàn)略聯(lián)盟的方式,以確保自己穩(wěn)定的零部件供應(yīng)。
經(jīng)過市場的洗禮,研發(fā)實力強、產(chǎn)品質(zhì)量優(yōu)異的大廠家將會引領(lǐng)主減速器行業(yè)的潮流。隨著汽車行業(yè)的發(fā)展,汽車在節(jié)能、環(huán)保、舒適等方面的性能將顯著提升,這就要求主減速器產(chǎn)品的性能進一步提高。主減速器作為卡車的核心總成,其總要性也越來越被關(guān)注。
在國外,一方面汽車行駛的路況越來越好,平均車速逐漸提高,另一方面節(jié)約能源,減少對環(huán)境的污染意識使得發(fā)動機正向著大轉(zhuǎn)矩和低轉(zhuǎn)速的方向發(fā)展。為適應(yīng)以上情況,汽車驅(qū)動橋速比應(yīng)該減小,主減速比小的驅(qū)動橋沒必要采用雙級減速器。因而目前在國外貨車上廣泛的采用的是單級減速驅(qū)動橋,單級驅(qū)動橋具有成本低,質(zhì)量輕,維修保養(yǎng)簡單,傳動效率高,噪音小,溫升低和整車油耗低等優(yōu)點。
1.3 課題的技術(shù)路線
(1)總體方案設(shè)計,根據(jù)已給數(shù)據(jù)進行整車性能計算,選擇確定主減速器的形式。
(2)主減速器雙曲面錐齒輪副設(shè)計,根據(jù)已知的數(shù)據(jù)計算確定主減速器雙曲面錐齒輪的尺寸參數(shù),并用三維建模軟件繪制出實體。
(3)4個軸承的選擇,其中兩個是主減速器主動錐齒輪軸的支承軸承,另兩個是主減速器殼的支承軸承,根據(jù)已知數(shù)據(jù)計算,選擇合適大小的軸承,確定軸承的位置和主動錐齒輪軸的尺寸,并設(shè)計合理的預(yù)緊裝置,調(diào)整齒輪的嚙合印記,用三維建模軟件造型。
(4)主減速器殼設(shè)計,軸承預(yù)緊及齒面嚙合印記調(diào)整,由前幾步已知的尺寸確定主減速器殼尺寸,進行主減速器殼支稱軸承預(yù)緊和主減速器齒輪嚙合印記調(diào)整,并用三維建模軟件繪制實體。
(5)差速器和殼的設(shè)計及驗算,根據(jù)已有零件尺寸用三維軟件建模。
(6)根據(jù)設(shè)計計算及三維建模完成設(shè)計說明書。
2 總體方案的設(shè)計
2.1 主減速器結(jié)構(gòu)形式的選擇
主減速器的功用是增大輸入的轉(zhuǎn)矩并相應(yīng)降低轉(zhuǎn)速,以及對于縱置發(fā)動機改變扭矩旋轉(zhuǎn)方向。
為了順應(yīng)各種車型和使用要求,主減速器有多種布局形式。根據(jù)主減速器所具有的齒輪副的數(shù)量可以分為單級主減速器(有一對齒輪副)和雙級主減速器(有兩對齒輪副)。而雙級主減速器又可分為整體式和分開式兩種。其中,分開式雙級主減速器的第一級設(shè)于驅(qū)動橋中部(稱為中央減速器),而第二級設(shè)于輪邊(稱為輪邊減速器)。當(dāng)主減速器具有兩個擋位時,稱為雙級主減速器。
單級主減速器常由一對圓錐齒輪構(gòu)成。單級主減速器結(jié)構(gòu)較簡單,體積小,質(zhì)量小,成本低,傳動效率高,使用簡便。但是主傳動比不能過大,一般不能超過7.0。如果進一步提高主減速比,將會增大從動齒輪直徑,從而減小離地間隙,降低汽車通過性,并且會使從動齒輪熱處理復(fù)雜化。由于有上述特點,單級主減速器廣泛應(yīng)用于轎車和輕、中型貨車上。
雙級主減速器有兩對齒輪副傳動,與單級主減速器相比,可以在保證離地間隙相同的情況下得到更大的傳動比(7~12),但是其尺寸較大,質(zhì)量較大,成本高傳動效率低。雙級主減速器主要用于中、重型貨車、越野車和大客車上。
本課題設(shè)計的是某兩噸貨車的后驅(qū)動橋,所以本課題設(shè)計選擇單級主減速器。
2.2 主減速器支承形式的選擇
2.2.1 主動錐齒輪的支承形式
主減速器主動錐齒輪有兩種支承形式,即懸臂式支承(見圖2.2 a)、跨置式支承(見圖2.2 b)。
在懸臂式支承設(shè)計中,圓錐滾子軸承布置得大端向外,以增加支承間的距離b,并減小懸臂長度a,這樣可以改善支承剛度。一般要求兩軸承支承間距要比2.5倍的懸臂長度還要大。靠近齒輪的軸徑直徑d應(yīng)該不小于懸臂長度a,懸臂式支承的優(yōu)點是其結(jié)構(gòu)簡單;缺點是支承剛度較差。這種結(jié)構(gòu)主要用于傳遞轉(zhuǎn)矩較小的車橋、輕型貨車的單級主減速器,以及許多雙級主減速器中。
跨置式支承的支承剛度較大,可以保證嚙合良好,提高齒輪承載能力,適用于傳遞較大的轉(zhuǎn)矩。本課題設(shè)計所選主動錐齒輪支承形式為懸臂式。
2.2.2 從動錐齒輪支承
本課題所選從動錐齒輪支承形式為跨置式,如圖2.3所示,其中從動錐齒輪固結(jié)于差速器總成,通過一對圓錐滾子軸承支承。在設(shè)計中,圓錐滾子軸承應(yīng)該布置的大端向內(nèi),以減小支承跨距(圖中c+d),這樣可以增加支承的剛度。另外為了增加支承剛度,一般要在差速器殼上加筋。為了使從動錐齒輪背面的差速器殼處有足夠的位置設(shè)置加強筋,距離c+d應(yīng)該不小于從動齒輪大端分度圓直徑的70%。
2.3 傳動形式的選擇
主減速器的傳動形式主要有:螺旋錐齒輪傳動(如圖2.4 a所示)、雙曲面齒輪傳動(如圖2.4 b所示)、圓柱齒輪傳動(如圖2.4 c所示)和蝸桿渦輪傳動(如圖2.4 d所示)。
螺旋錐齒輪傳動的特點是:零件制造相對簡單,但其工作噪音大,對嚙合精度十分敏感,當(dāng)齒輪副錐頂稍有不吻合,便會使工作條件急劇變壞,從而使磨損加劇,噪聲增大。
為保證齒輪副的準(zhǔn)確嚙合,必需將軸承預(yù)緊,提高支承剛度,增大主減速器殼體剛度。
渦輪蝸桿傳動的特點:可以在輪廓尺寸較小、結(jié)構(gòu)質(zhì)量較小的情況下得到較大的傳動比(傳動比可以大于7),工作平穩(wěn)、無聲,適宜把多驅(qū)動橋汽車的驅(qū)動橋布置成貫通式。但是,其傳動效率較低,成本較高,要求采用價格高的材料(渦輪齒圈要求用高質(zhì)量的錫青銅)。由于有以上特點,蝸桿渦輪傳動僅在生產(chǎn)批量不大的少數(shù)場合得到應(yīng)用,例如在個別重型多軸驅(qū)動汽車,具有高轉(zhuǎn)速發(fā)動機的大客車以及某些高級轎車上采用這種傳動方式,只有在少量生產(chǎn)時才可以考慮采用這種結(jié)構(gòu)。
圓柱齒輪傳動的特點:圓柱齒輪應(yīng)用于發(fā)動機縱置的驅(qū)動橋結(jié)構(gòu)當(dāng)中。
雙曲面齒輪傳動的特點:主、從動軸軸線不相交,而是有一偏移距E,這是與螺旋錐齒輪的差別。由于存在偏移距,使得主動齒輪與從動齒輪的螺旋角不相等,且主動齒輪螺旋角大于從動齒輪螺旋角。雙曲面齒輪一個最大的特點就是當(dāng)雙曲面齒輪與螺旋錐齒輪的尺寸相同時,雙曲面齒輪傳動有更大的傳動比。從另一個角度說,當(dāng)傳動比確定且從動齒輪尺寸相同的時候,雙曲面主動錐齒輪比螺旋錐齒輪有較大的直徑,從而有較高的輪齒強度和較大的主動齒輪軸,軸承剛度也大。再從第三個角度看,當(dāng)傳動比和主動齒輪尺寸一定時,雙曲面從動齒輪直徑比相應(yīng)的螺旋錐齒輪的小,因而可以增大主減速器殼處的離地間隙。
但是,雙曲面齒輪傳動也有缺點,即摩擦較為嚴(yán)重。在工作過程中,除了有沿齒高方向的側(cè)向滑動之外,還有延齒長方向的縱向滑動,而這種齒面之間的縱向滑動是雙曲面齒輪傳動所特有的。這種縱向滑動可以改善齒輪的磨合過程,并使其工作安靜平穩(wěn)。但是,它也使摩擦損失增加,從而降低傳動效率。由于這種縱向滑動是隨著偏移距的增大而增大的,所以在設(shè)計中不應(yīng)該把偏移距選的過大。在工作過程中,雙曲面的齒面間壓力較大、摩擦較大,可能導(dǎo)致破壞齒面之間的油膜,甚至導(dǎo)致齒面燒結(jié)咬死。因此,設(shè)計雙曲面齒輪時要注意潤滑問題,一般采用特殊潤滑油。
表2.1所示為雙曲面齒輪與螺旋錐齒輪的優(yōu)缺點比較。由于雙曲面齒輪有上述很多優(yōu)點,因此得到了廣泛應(yīng)用。
表 2.1 雙曲面齒輪與螺旋錐齒輪的優(yōu)缺點比較
特點
雙曲面齒輪
螺旋齒輪
運轉(zhuǎn)平穩(wěn)性
優(yōu)
良
抗彎強度
提高30%
較低
接觸強度
高
較低
抗膠合能力
較弱
強
滑動速度
大
小
效率
對安裝誤差的敏感性
約0.98
取決于支承剛度和刀盤直徑
約0.99
取決于支承剛度和刀盤直徑
軸承負(fù)荷
小齒輪的軸向力較大
小齒輪的軸向力較小
潤滑油
用防刮傷添加劑的特種潤滑油
普通潤滑油
根據(jù)設(shè)計要求,本課題選擇的主減速器傳動形式為雙曲面齒輪傳動。
3 主減速器齒輪副設(shè)計
3.1 傳動系載荷的計算
(1)按發(fā)動機最大扭矩與最低檔傳動比確定從動錐齒輪的計算扭矩
(3.1)
式中:k—液力變矩系數(shù),k=1
—發(fā)動機最大轉(zhuǎn)矩,=320 N·m
—變速器一擋傳動比,=5.557
—分動器傳動比,=1
—主減速器傳動比,=5.83
—發(fā)動機到主減速器從動齒輪的傳動效率,對于雙曲面齒輪,取=0.9
—計算驅(qū)動橋數(shù),=1
—猛接離合器所產(chǎn)生的動載系數(shù),對于一般載貨汽車取 =1
將數(shù)據(jù)代入公式中得N·m
(2)按驅(qū)動輪打滑扭矩確定從動錐齒輪的計算扭矩
(3.2)
式中:—滿載狀態(tài)下驅(qū)動橋上的靜載荷,N
—最大加速度時后軸負(fù)荷轉(zhuǎn)移系數(shù),商用車=1.1~1.2,取1.2
—輪胎和路面間的附著系數(shù)。對安裝一般輪胎的公路用汽車,在良好的
混凝土和瀝青路面上, =0.85。
—車輪滾動半徑(m),=0.345m(輪胎高寬比按80%計算)
—主減速器從動齒輪到車輪之間的傳動比,無輪邊減速器,取=1
—主減速器從動齒輪到車輪之間的傳動效率,無輪邊減速器,取=1
將數(shù)據(jù)代入公式得=N·m
(3) 按日常行駛平均轉(zhuǎn)矩確定從動錐齒輪的計算扭矩
(3.3)
式中:—汽車滿載總重量,=4.2359.81000=41503N
—車輪滾動半徑(m),=0.345m
—主減速器從動齒輪到車輪之間的傳動比,無輪邊減速器,取=1
—主減速器從動齒輪到車輪之間的傳動效率,無輪邊減速器,取=1
—驅(qū)動橋數(shù),=1
—性能參數(shù),取,當(dāng)時,=0,
,所以=0
—公路坡度系數(shù),對于商用車而言,=0.05~0.09,取=0.08
—道路滾動阻力系數(shù),對于商用車而言,=0.015~0.020,取=0.019
將數(shù)據(jù)代入公式(3.3)得N·m
本文選取和中的較小值來計算錐齒輪最大應(yīng)力。計算中所選取的扭矩值為=9128N·m。若進行錐齒輪的疲勞壽命計算,其計算扭矩應(yīng)取=1418 N·m。
3.2 主減速器齒輪的設(shè)計計算
3.2.1 主從動錐齒輪齒數(shù)的選擇
為了保證磨合均勻,主、從動錐齒輪的齒數(shù)應(yīng)避免出現(xiàn)公約數(shù),對于商用車, 一般不小于6。本次設(shè)計取7,根據(jù)主減速比取41。
3.2.2 從動錐齒輪節(jié)圓直徑及端面模數(shù)的計算
節(jié)圓直徑可以根據(jù)經(jīng)驗公式確定,
(3.4)
式中:—從動齒輪大端分度圓直徑(mm)
—直徑系數(shù),一般為13.0~15.3
—從動齒輪的計算轉(zhuǎn)矩(N·m),=9128N·m
將數(shù)據(jù)代入公式(3.4)得=(272~320 )mm
初選則=7.32
根據(jù) (3.5)
校核=(0.3~0.4)=(6.27~8.36), 所以取值滿足條件。
3.2.3 主從動錐齒輪的齒面寬度計算
對于汽車工業(yè),主減速器從動錐齒輪齒寬
=0.155 (3.6)
將數(shù)據(jù)代入公式(3.6)得=46.5 mm, =51.1 mm
3.2.4 齒輪的偏移計算
對于轎車、輕型載貨汽車來說,一般情況下,偏移距=60mm,E選擇45mm,雙曲面齒輪的螺旋方向為:主動錐齒輪左旋、從動錐齒輪右旋。主動錐齒輪在從動錐齒輪中心線下方。
3.2.5 螺旋角的選擇
由于主動錐齒輪與從動錐齒輪為雙曲面齒輪,所以二者的螺旋角并不是一樣的,且主動錐齒輪的螺旋角大于從動錐齒輪,本次設(shè)計初選主動錐齒輪螺旋角50°,從動錐齒輪螺旋角30°。
3.2.6 法向壓力角的選擇
壓力角的選擇與輪齒的強度有關(guān),壓力角越大,輪齒的強度越高。并且能減少齒輪不產(chǎn)生根切的最小齒數(shù)。載貨汽車一般選用22.5°的壓力角。
3.2.7 雙曲面齒輪幾何尺寸計算結(jié)果
本文設(shè)計中,運用Excel表格雙面錐齒輪計算表進行計算。如表3.1所示雙曲面齒輪150個結(jié)構(gòu)參數(shù)。
表3.1雙曲面齒輪的結(jié)構(gòu)參數(shù)計算結(jié)果
序號
計算公式
計算結(jié)果
注釋
1
7
小齒輪齒數(shù)應(yīng)不小于6
2
41
由及主減速比確定
3
0.1707
齒數(shù)比的倒數(shù)
4
46.5
大齒輪齒面寬
5
E
45
小齒輪軸線偏移距
6
300
大齒輪分度圓直徑
7
152.4
刀盤名義半徑
8
45
小齒輪的螺旋角
9
1.1918
10
0.2049
11
0.9797
12
127.2231
大齒輪在齒面寬中點處的分度圓半徑
13
0.3465
大小輪螺旋角差角正切值
14
0.9380
15
1.3510
初定小輪擴大系數(shù)
16
21.7210
小輪中點分度圓半徑換算值
17
29.3451
小齒輪在齒面寬中點處的分度圓半徑
18
1.2
輪齒收縮系數(shù)
19
650.3151
近似計算公法線K1K2在大輪軸線上的投影
20
0.0692
大輪軸線在小輪回轉(zhuǎn)平面內(nèi)偏置角正切
21
1.0024
22
0.0690
23
3.9584
大輪軸線在小輪回轉(zhuǎn)平面內(nèi)偏置角
24
0.3378
初算大輪回轉(zhuǎn)平面內(nèi)偏置角正切
25
0.3589
26
0.1924
初算小輪分錐角正切
27
0.9820
28
0.3440
29
0.9390
30
1.1978
第一次校正小輪螺旋角正切
31
-0.0021
擴大系數(shù)修正量
32
-0.0004
大輪擴大系數(shù)修正量的換算值
33
Sinε1=(24)-(22)-(32)
0.3378
校正后大輪偏置角的正弦值
34
0.3589
35
0.1923
校正后小輪分錐角正切
36
10.8872
小齒輪節(jié)錐角
37
0.9820
小齒輪節(jié)錐角余弦值
38
0.3440
第二次校正后的螺旋角差值的正弦
39
21.3145
40
0.9316
41
1.2131
第二次校正后小輪螺旋角的正切值
42
50.5005
小齒輪中點螺旋角
43
0.6361
小齒輪中點螺旋角余弦值
44
29.1860
大齒輪中點螺旋角
45
0.8730
46
0.5586
47
0.2048
48
78.4237
大齒輪節(jié)錐角
49
0.9797
50
0.2007
51
29.8369
52
633.9815
53
663.8184
兩背錐之和
54
113.3773
大輪錐距在螺旋線中點切線方向投影
55
98.6718
小輪錐距在螺旋線中點切線方向投影
56
0.0849
極限齒形角正切負(fù)值
57
4..8540
極限齒形角負(fù)值
58
0.9964
59
0.0035
60
0.0001
61
11187.1462
62
0.0013
63
0.0048
64
135.1807
65
135.6673
齒線中點曲率半徑
66
1.1233
67
0.0343
0.8293
68
119.7355
0.18889
69
1.0139
70
29.2299
71
-3.1695
大齒輪節(jié)錐頂點小齒輪軸線距離
72
129.8648
在節(jié)平面內(nèi)大齒輪齒面寬中點錐距
73
153.1146
大齒輪節(jié)錐距
74
23.2498
大輪分錐上齒寬之半
75
9.7526
大齒輪在齒面寬中點處的齒工作高
76
0.4663
77
0.6558
78
45
輪齒兩側(cè)壓力角的總和
79
sin
0.7071
80
22.5
平均壓力角
81
0.9239
平均壓力角余弦
82
0.4142
平均壓力角正切
83
1.5833
84
6.7967
雙重收縮齒齒根角的總和
85
0.1300
大齒輪齒頂高系數(shù)
86
1.150-
1.0200
大輪齒根高系數(shù)
87
1.2678
大齒輪齒面寬中點處的齒頂高
88
9.9976
大齒輪齒面寬中點處的齒根高
89
0.8836
大輪齒頂角
90
0.0154
91
5.9132
大齒輪的齒根角
92
sin
0.1030
93
1.6264
大齒輪的齒頂高
94
12.3928
大齒輪的齒根高
95
1.5129
96
14.0192
大齒輪齒全高
97
12.5063
大齒輪齒工作高
98
97.3072
大齒輪的面錐角
99
0.9826
100
0.1855
101
72.5105
大齒輪的根錐角
102
0.9538
103
0.3005
104
0.3151
105
300.6527
大齒輪外圓直徑
106
33.8955
大端分度圓中心至軸線交叉點距離
107
32.3023
大齒輪外圓至小齒輪軸線的距離
108
0.7478
大端頂圓齒頂與分度圓處齒高之差
109
3.5450
大端分度圓處與根圓處在齒高方向上高度差
110
-3.9173
大齒輪面錐頂點至小齒輪軸線的距離
111
0.3755
大齒輪跟錐頂點至小齒輪軸線的距離
112
136.4334
113
0.3298
修正后小輪軸線在大輪回轉(zhuǎn)平面內(nèi)的偏置角正弦
114
0.9440
115
0.3494
116
0.2837
117
16.4819
小齒輪的面錐角
118
0.9589
119
0.2959
120
6.2258
121
9.1274
小齒輪面錐頂點至大齒輪軸線的距離
122
0.2814
123
15.7142
0.9626
124
5.6003;0.9952
125
5.9547;0.9952
126
0.0846
-0.4624
127
0.9672
128
119.9749
129
0.9635
130
22.4882
131
137.1327
小齒輪外緣至大齒輪軸線的距離
132
22.4885
133
93.7980
小齒輪輪齒前緣至大齒輪軸線的距離
134
146.2601
135
86.5481
小齒輪的外圓徑
136
132.7423
137
0.3390
在大輪回轉(zhuǎn)平面內(nèi)偏置角正弦
138
19.8161
139
0.9408
140
-12.5922
141
29.6000
小齒輪根錐頂點至大齒輪軸線的距離
142
0.1746
143
10.0528
小齒輪根錐角
144
0.9846
145
0.1773
146
0.2032
最小齒側(cè)間隙允許值
147
0.2794
最大齒側(cè)間隙允許值
148
0.1184
149
8.5117
150
106.6146
在節(jié)平面內(nèi)大齒輪內(nèi)錐距
3.3 齒輪的強度計算及校核
3.3.1 單位齒長圓周力的計算
主減速器錐齒輪的表面耐磨性,常用齒輪上的單位齒長圓周力來計算,即
= (3.7)
式中:—輪齒上的單位齒長圓周力(N/mm)
—作用在輪齒上的圓周力(N)
—從動齒輪齒面寬(mm)
1)按發(fā)動機最大轉(zhuǎn)矩計算時
= (3.8)
式中:—變速器傳動比
—主動錐齒輪中點分度圓直徑,由前面表中數(shù)據(jù)計算得mm
(1)當(dāng)變速器掛第一擋時,==5.557
=×10=1251.05 N/mm
(2)當(dāng)變速器掛直接擋時,==1,
=×10=225.13 N/mm
2)按驅(qū)動輪打滑的轉(zhuǎn)矩計算時
=×10 (3.9)
式中:—滿載狀態(tài)下驅(qū)動橋上的靜載荷,N
—最大加速度時后軸負(fù)荷轉(zhuǎn)移系數(shù),商用車=1.1~1.2,取1.1
將數(shù)據(jù)帶入(3.9)得
=×10=1414.69N/mm
許用單位齒長的圓周力見表3.2。在現(xiàn)代汽車設(shè)計中,由于材質(zhì)和加工工藝的提高,單位齒長上的圓周力有時高出表中所列數(shù)值20%~25%。
表3.2 單位齒長的圓周力
汽車類別
按發(fā)動機最大轉(zhuǎn)矩計算時/N?mm
按驅(qū)動輪打滑轉(zhuǎn)矩計算時/N?mm
輪胎與地面的附著系數(shù)
一擋
直接擋
轎車
893
321
893
0.85
貨車
1429
250
1429
0.85
大客車
982
214
0.85
牽引車
536
250
0.85
對于貨車而言,掛一擋時單位齒長圓周力許用值[P]=1429 N/mm;掛直接擋時單位齒長圓周力許用值[P]=250 N/mm;按驅(qū)動輪打滑轉(zhuǎn)矩計算時[P]=1429 N/mm。
對照后發(fā)現(xiàn)本次設(shè)計滿足許用值。
3.3.2 輪齒彎曲強度校核
汽車主減速器雙曲面齒輪的計算彎曲應(yīng)力為
=×10 (3.9)
式中:—錐齒輪輪齒的齒根彎曲應(yīng)力(N/mm)
—計算齒輪的計算轉(zhuǎn)矩(N·m),當(dāng)按=min[ ]計算時,對于主動錐齒輪= /=9128/5.83=1565.69N·m,從動錐齒輪==9128N·m,當(dāng)按計算時,主動錐齒輪=/=1418/5.83=243.22 N·m,從動錐齒輪==1418N·m
—過載系數(shù),一般=1
d—該齒輪大端分度圓直徑,從動錐齒輪大端直徑=300mm,主動錐
齒輪大端直徑=+× sin=29.3451×2+51.1×sin10.89=68.34mm
—是端面模數(shù)(mm),從動錐齒輪端面模數(shù)=7.32mm,主動錐齒輪端面模數(shù)=/=68.34/7=9.76mm
—齒根彎曲強度和齒面接觸強度的尺寸系數(shù),它反映了材料性質(zhì)的不均勻性,與齒輪尺寸及熱處理等因素有關(guān)。當(dāng)≧1.6 mm時,=(/25.4);當(dāng)﹤1.6 mm時,=0.5,=9.76mm,則=(9.76/25.4)=0.787,=7.32mm,則=(7.32/25.4)=0.733
—軸核分配系數(shù):對于懸臂式結(jié)構(gòu) =1.1~1.25。取=1.1
—質(zhì)量系數(shù),當(dāng)齒輪接觸良好,齒距及徑向跳動精度高時,=1
b—計算齒輪的齒面寬度,主動錐齒輪齒面寬度=51.1mm,從動錐齒輪齒面寬=46.5mm
—所計算齒輪的輪齒彎曲應(yīng)力綜合系數(shù), =22.5°(小齒輪)=0.35,(大齒輪)=0.293(查文獻 [1]183頁)
按=min[ ]計算時,彎曲應(yīng)力不應(yīng)超過700 N/mm, 按=計算的彎曲應(yīng)力不應(yīng)超過210.9 N/mm。
1)對于主動錐齒輪來說
(1)按驅(qū)動輪打滑計算,對于主動錐齒輪,代入數(shù)值得
=×10=302.99MPa<700 MPa
(2)按汽車日常行駛當(dāng)量計算
=×10=47.07 MPa <210 MPa
2)對于從動錐齒輪來說
(1)按驅(qū)動輪打滑計算,對于從動錐齒輪
=×10=491.98MPa <700 MPa
(2)按汽車日常行駛當(dāng)量計算
=×10=76.43MPa <210 MPa
所以齒輪輪齒滿足彎曲強度。
3.3.3 輪齒接觸強度校核
因為主、從動錐齒輪的齒面接觸應(yīng)力相等,所以只需求得一個齒輪上應(yīng)力就可以,錐齒輪輪齒的齒面接觸應(yīng)力為
= (3.10)
式中:—錐齒輪輪齒的齒面接觸應(yīng)力(MPa)
—主動錐齒輪大端分度圓直徑(mm),=68.34mm
—取和中的較小者(mm),b=46.5mm
—尺寸系數(shù),它考慮了齒輪尺寸對淬透性的影響,通常=1.0
—齒面品質(zhì)系數(shù),它取決于齒面的表面粗糙度及表面覆蓋層的性質(zhì)(如鍍銅,磷化處理等),對于制造精確的齒輪,=1.0
—綜合彈性系數(shù),鋼對鋼齒輪,=232.6N/mm
—主動錐齒輪計算轉(zhuǎn)矩,當(dāng)按=min[ ]計算時= / =9128/5.83=1565.69N·m,當(dāng)按計算時,=/=1418/5.83=243.22 N·m
—齒面接觸強度的綜合系數(shù),取=0.21(取值來自于參考文獻查文獻 [1]189頁)
按=min[ ]計算的最大接觸應(yīng)力不應(yīng)超過2800 MPa, 按=計算的疲勞接觸應(yīng)力不應(yīng)超過1750 MPa。
(1)錐齒輪按=計算時
==1927.38MPa
≦[]=2800 MPa,符合要求。
(2)錐齒輪按=計算時
==759.65MPa
≦[]=1750 MPa,符合要求。
所以主減速器雙曲面齒輪輪齒滿足接觸強度。
3.3.4 錐齒輪材料及熱處理
汽車驅(qū)動橋主減速器的工作相當(dāng)繁重,與傳動系其它齒輪比較,具有載荷大、作用時間長、變化多、有沖擊等特點。根據(jù)這些情況,驅(qū)動橋齒輪材料應(yīng)滿足以下的要求:
1)具有高的彎曲疲勞強度和表面接觸疲勞強度,齒面具有較高的硬度以保證有較高的耐磨性;
2)輪齒心部應(yīng)有適當(dāng)?shù)捻g性,以適應(yīng)沖擊載荷,避免在沖擊載荷下輪齒根部折斷;
3)鋼材的鍛造、切削加工性能及熱處理性能良好,熱處理變形小或者變形規(guī)律易控制,以提高產(chǎn)品質(zhì)量、縮短制造時間、減小生產(chǎn)成本并降低廢品率。
4)選擇齒輪材料的合金元素要適應(yīng)我國的情況。例如,為了節(jié)約鎳、鉻等元素,我國發(fā)展了以猛、釩、鈦、鉬、硅為主的合金結(jié)構(gòu)鋼系統(tǒng)。
汽車主減速器與差速器齒輪基本上都采用滲碳合金鋼制造。常用的鋼號有20CrMnTi,22CrMnMo,20MnVb和20MnVn2TiB。滲碳合金鋼的優(yōu)點是表面可得到含碳量很高的硬化層,有相當(dāng)高的耐磨性和抗壓性,而心部較軟,有較好的韌性。因此,這種材料的抗彎強度、表面接觸強度和承受沖擊的能力都較高。由于鋼本身的含碳量較低,所以其鍛造性能及切削加工性能均較好。滲碳合金鋼的主要缺點是熱處理費用較高,表面硬化層以下的基底較軟,在承受很大壓力時可能產(chǎn)生塑性變形,如果滲透層與心部的含碳量相差過多,便會引起表面硬化層的剝落。
近年來,采用精鑄、精鍛的錐齒輪在汽車主減速器中已有較多的使用,它具有省材料、生產(chǎn)率高、無切削或少切削等優(yōu)點,但缺點是齒形精度較差。為改善新齒輪的磨合狀況.防止其在運行初期出現(xiàn)早期磨損、擦傷、膠合或咬死,錐齒輪副(或僅是大齒輪)在熱處理及精加工(如磨齒或配對研磨)后均作厚度為0.005~0.010~0.020mm的磷化處理或鍍銅、鍍錫。這種表面鍍層不能用來補償零件的公差尺寸,也不能取代潤滑。齒面噴丸處理有可能提高壽命25%。對于滑動速度高的齒輪可進行滲硫處理,以提高其耐磨性。由于滲硫處理溫度較低,所以齒輪不會產(chǎn)生變形。滲硫后摩擦系數(shù)可顯著降低,即使?jié)櫥瑮l件較差,也能防止齒面擦傷、咬死和膠合。本次設(shè)計錐齒輪材料為20CrMnTi。
3.4 主減速器齒輪的三維建模
本次設(shè)計中主減速器主從動錐齒輪的建模是依賴于UG三維建模軟件來完成的,具體過程如下:
圖 3.1 UG中主動主齒輪設(shè)計參數(shù)界面
圖 3.2 UG建模軟件界面
打開UG建模軟件界面,如圖3.1所示,在此界面下依次選擇CC工具箱,齒輪建模,格里森準(zhǔn)雙曲面齒輪,創(chuàng)建齒輪,卡車拖拉機等命令,然后輸入主動齒輪參數(shù),軟件界面如圖3.2所示,點擊確定,完成主動錐齒輪的繪制。
圖 3.3 UG中從動主齒輪設(shè)計參數(shù)界面
從動錐齒輪的畫法和主動錐齒輪一致,只有參數(shù)不同,從動錐齒輪參數(shù)如圖3.3所示。
用UG建模軟件完成主從動錐齒輪的建模后,還需要將文件導(dǎo)出,轉(zhuǎn)變成CATIA能編輯使用的文件,以便完成主動錐齒輪軸的建模。
圖3.4 從動雙曲面錐齒輪
主減速器主從動雙曲面錐齒輪設(shè)計結(jié)果如圖3.4所示。
4 減速器軸承的選擇
4.1 軸承支承受力分析
本課題設(shè)計中用到四個軸承,受力分析如圖4.1所示
1)主減速器齒輪上力的計算
齒輪齒面寬中點處的圓周力F為
F=(kN) (4.1)
式中:—作用在從動齒輪上的轉(zhuǎn)矩
=-
—從動齒輪齒寬中點處的分度圓直徑
—從動齒輪齒面寬46.5mm
—從動齒輪節(jié)錐角,=78.42°
=300-46.5×=254.45mm
=29.3451×2=58.6902mm
將數(shù)據(jù)帶入式(4.1)得
==11.1456 kN
2)錐齒輪的軸向力和徑向力
根據(jù)主動錐齒輪為左旋,順時針旋轉(zhuǎn)
(1)主動錐齒輪軸向力
= (4.2)
式中:—表示輪齒驅(qū)動齒廓的法向壓力角,22.5°
—齒面寬中點處螺旋角,主動錐齒輪50.5°
—節(jié)錐角,在計算小齒輪時用齒頂面錐角代替,為16.48°,在計算大齒輪時用齒根面錐角代替,為72.51°。
按照上式計算出來的軸向力若為正值,說明軸向力方向離開錐頂,若為負(fù)值,指向錐頂。徑向力為正值表明徑向力使該齒輪離開配合齒輪,若為負(fù)值,則使該齒輪趨向相配齒輪。
==15.0242KN
(2)主動錐齒輪徑向力
(4.3)
=3.1243kN
(3)從動錐齒輪軸向力
= (4.4)
== 2.8590KN
(4)從動錐齒輪徑向力
= (4.5)
==15.0769KN
3)軸承載荷的計算
主動錐齒輪靠近錐齒輪的軸承是軸承A
主動錐齒輪遠(yuǎn)離錐齒輪的軸承是軸承B
從動錐齒輪靠近錐齒輪的軸承是軸承C
從動錐齒輪遠(yuǎn)離錐齒輪的軸承是軸承D
a—主動錐齒輪軸上兩軸承的距離,取a=112mm
b—主動錐齒輪軸上前軸承到小齒輪端面的距離,b=42mm
c—從動錐齒輪支撐軸承中距離從動錐齒輪近的軸承距離從動錐齒輪齒寬中點的距離,90mm
d—從動錐齒輪支撐軸承中距離從動錐齒輪遠(yuǎn)的軸承距離從動錐齒輪齒寬中點的距離,110mm
軸承A軸向力==15024.2N
軸承A的徑向力= (4.6)
=
=15327.90N
軸承B軸向力=0
軸承B的徑向力= (4.7)
=
=5395.51N
軸承C軸向力==2859N
軸承C的徑向力= (4.8)
=
=11824.06N
軸承D的軸向力=0
軸承D的徑向力= (4.9)
=
=5309.85N
4.2 軸承選擇
4.2.1 軸承類型選擇
選用軸承時,首先選擇的是軸承的類型。軸承所承受的載荷的大小、方向和性質(zhì)是選擇軸承類型的主要依據(jù)。根據(jù)載荷的大小選擇軸承類型時,由于滾子軸承中主要元件間是線接觸,宜用于承受較大的載荷,承載后的變形也較小。而球軸承中主要以點接觸,適宜承受較輕或中等大小的載荷,所以在載荷較小時,優(yōu)先選擇球軸承。
根據(jù)載荷方向選擇軸承類型時,對于純軸向載荷,一般選用推力軸承。較小的純軸向載荷可選用推力球軸承;較大的純軸向載荷可選用推力滾子軸承。對于純徑向載荷,一般選用深溝球軸承、圓柱滾子軸承或滾針軸承。當(dāng)軸承在承受徑向載荷的同時,還有不大的軸向載荷時,可選用深溝球軸承或接觸角不大的角接觸球軸承或圓錐滾子軸承;當(dāng)軸向載荷很大時,可選用接觸角較大的角接觸球軸承或 圓錐滾子軸承,或者選用向心軸承和推力軸承組合在一起的結(jié)構(gòu),分別承擔(dān)徑向載荷和軸向載荷。
由上面所計算的軸承徑向力和軸向力數(shù)值來看,徑向力和軸向力都較大(以軸承A為例),所以選擇軸承類型為圓錐滾子軸承。
4.2.2 軸承型號選擇
圓錐滾子軸承尺寸的選擇通過軸承壽命計算來選擇,軸承的壽命與所受載荷大小有關(guān),工作載荷越大,引起的接觸應(yīng)力也就越大,因而在發(fā)生點蝕破壞前所能經(jīng)受的應(yīng)力變化次數(shù)也就越少,也就是軸承的壽命越短。當(dāng)軸承的基本額定壽命(用表示)恰好為轉(zhuǎn)時,軸承所能承受的載荷,就是軸承的基本額定動載荷,用字母C表示,軸承在實際工作中所承受的載荷P叫當(dāng)量動載荷,軸承基本額定動載荷和當(dāng)量動載荷的關(guān)系用下式表示
(4.10)
式中:—軸承的基本額定壽命(r)
C—軸承的基本額定動載荷(kN)
P—軸承的當(dāng)量動載荷(kN)
—溫度系數(shù),軸承工作溫度小于100攝氏度時為1
—軸承壽命指數(shù),對滾子軸承取10/3
軸承的當(dāng)量動載荷
P=(X+Y) (4.11)
式中:—載荷系數(shù),考慮不同載荷性質(zhì)(平穩(wěn)的、震動的或劇烈沖擊的)對軸承的影響,取不同的值,對于車輛=1.2~1.8,這里取1.6
X、Y—計算系數(shù),軸承不同取值不同,對于圓錐滾子軸承X=0.4,Y需要根據(jù)具體軸承尺寸型號確定,暫時估計取Y=1.5
—所計算軸承承受的徑向力(kN)
—所計算軸承承受的軸向力(kN)
以軸承A為例,軸承的當(dāng)量動載荷
P=(X+Y)=1.6(0.4×15.3279+1.5×15.0242)=38.223 kN
按軸承的壽命選擇軸承時,先給定一個軸承的預(yù)期壽命(根據(jù)使用情況自己設(shè)定)L(圈),然后根據(jù)軸承實際工作中所受的當(dāng)量動載荷,由公式(4.12)計算出軸承的額定動載荷C,根據(jù)C去選擇合適的軸承。
(4.12)
式中:—預(yù)期壽命(圈)
C—軸承的基本額定動載荷(kN)
P—軸承的當(dāng)量動載荷(kN)
—溫度系數(shù),軸承工作溫度小于100攝氏度時為1
—軸承壽命指數(shù),對滾子軸承取10/3
在實際計算過程中,工作小時數(shù)表示軸承的額定壽命,
h (4.13)
式中:n—軸承的計算轉(zhuǎn)速,單位r/min,可根據(jù)汽車的平均行駛速度計算。對于沒有輪邊減速器的驅(qū)動橋來說,主減速器主動錐齒輪支承軸承計算轉(zhuǎn)速
r/min (4.14)
式中:—汽車的平均行駛速度 ,單位km/h,對于貨車可取30~35km/h,這里取35km/h
—車輪滾動半徑,=0.345m
—減速器的主減速比,=5.83
將數(shù)據(jù)帶入公式(4.14)得
r/min
本課題設(shè)計的軸承在汽車未達到大修里程前不能發(fā)生破壞,汽車大修里程為10萬公里。需要計算汽車行駛10萬公里軸承A工作了多少小時,根據(jù)公式(4.15)計算
(4.15)
式中:S—汽車的大修里程,10000km
將數(shù)據(jù)帶入公式(4.15)得
所以(圈)
近而由公式(4.12)得到軸承A的基本額定動載荷,
根據(jù)軸承用表,選擇軸承型號為30211的軸承。對于軸承B、C和D來說,它們所受的徑向力和軸向力都沒有軸承A的大,所以軸承A的壽命滿足使用要求,其它軸承也一定滿足使用要求。
4.2.3 軸承壽命校核
查軸承選用表30211軸承的Y值正好是1.5,所以不用進行第二次校核,對于這類轉(zhuǎn)速較高的軸承也不用進行靜強度校核。
4.3 軸承的設(shè)計結(jié)果
利用UG三維繪圖軟件繪制主動錐齒輪軸支承軸承,如圖4.3所示。
圖4.3 主動錐齒輪支承軸承
圖
5 主減速器預(yù)緊裝置設(shè)計
5.1.1 軸承的預(yù)緊
對主減速器錐齒輪滾錐軸承進行預(yù)緊,可以增加支承剛度,提高齒輪嚙合的平穩(wěn)性。但是預(yù)緊力不能過大,否則會使軸承工作條件變壞,降低傳動效率,加速軸承磨損,還會導(dǎo)致因軸承過熱而引起損壞。軸承預(yù)緊力的大小一般用軸承的摩擦力矩來衡量,有一個最佳的預(yù)緊后的軸承摩擦力矩,而這個力矩一般都要通過實驗來確定。貨車主動錐齒輪滾錐軸承的摩擦力矩一般為1~3N·m。
主動錐齒輪軸承預(yù)緊力的調(diào)整可以采用不同的方式進行,可以精選一對軸承內(nèi)圈之間的套筒長度,或精選墊片的厚度等。以上兩種方法的共同特點是調(diào)整比較麻煩,為了得到合適的軸承預(yù)緊度往往需要反復(fù)調(diào)整多次。近年來采用波形套調(diào)整軸承預(yù)緊度的方法得到廣泛采用,它可以克服以上缺點,本次課題設(shè)計中就是采用波形套來調(diào)整軸承預(yù)緊度的。如圖7.1所示,一個波形套筒放在兩個軸承內(nèi)圈之間,這兩個滾錐軸承被用螺母夾緊。波形套筒上有一個波形區(qū),這段波形區(qū)較容易產(chǎn)生軸向變形。波形套筒的軸向載荷與軸向變形的關(guān)系如圖7.2所示,在開始加載的OA段,載荷隨變形線性變化;過A點以后,載荷隨變形變化很小,所以稱A點為流動點。在給軸承預(yù)緊中,一般把波形套筒的工作區(qū)選在A點以后的塑性變形區(qū)。這時波形套的軸向變形允許范圍較大,而軸向力基本保持不變。這就意味著,在降低有關(guān)有關(guān)零件軸向尺寸精度要求的情況下,也可以獲得需要的預(yù)緊力。因而容易使軸承預(yù)緊度保持在規(guī)定范圍內(nèi)。但是,在波形套筒經(jīng)過每一次拆裝中都要受到冷作硬化。為了使再次預(yù)緊它還能在塑性變形區(qū)工作,在波形套的一段需要加上一個合適的薄墊片。波形套筒用冷拔低碳無縫鋼管制造。一個新的波形套經(jīng)拆裝3~4次就會因為塑性太小而報廢。這是波形套的主要缺點。
5.1.2 錐齒輪的調(diào)整
錐齒輪傳動,由于制造上的原因,齒輪間的正確嚙合不能一步到位,需要通過調(diào)整解決。正確的齒輪嚙合傳動,可降低齒輪噪聲和提高齒輪的使用壽命。這里所指的齒輪調(diào)整,有兩個方面的含義:嚙合間隙調(diào)整和齒面上接觸印痕的調(diào)整。
齒輪嚙合間隙(一般為0.15~0.4mm)的調(diào)整,是采用軸向移動從動齒輪的辦法完成的。例如,擰動擰動從動錐齒輪調(diào)整螺母(見圖7-3),使之軸向移動,一端擰入的圈數(shù)要等于另一端擰出的圈數(shù),以保證軸承的預(yù)緊度保持不變。也可以改變左右調(diào)整片厚度但總調(diào)整片厚度不變的辦法實施。一般來說,嚙合間隙的調(diào)整是緊跟軸承預(yù)緊度調(diào)整之后進行的,嚙合間隙調(diào)整的過程中不應(yīng)該破壞已調(diào)整好的軸承預(yù)緊度。
前面只說了通過軸向移動從動齒輪改變嚙合間隙的一些方法,對于主動錐齒輪軸軸向移動的方法,其結(jié)構(gòu)措施也很多,例如,可以通過改變墊片的厚度來調(diào)整,或用增減主動錐齒輪軸承座和主減速器殼體之間的調(diào)整墊片的方法來調(diào)整,而且后者調(diào)整比較方便,適合經(jīng)常維修的商用車。
印痕校驗是在嚙合間隙調(diào)整之后進行的。正確嚙合的輪齒印痕(主要看大齒輪)如圖7.4(a)所示。調(diào)整印痕位置通過兩種辦法來完成:改變嚙合間隙(大齒輪的軸向移動)和小齒輪的軸向移動(進入大齒輪的深度)。一般來說,改變嚙合間隙時,印痕在齒輪大端和齒輪小端之間縱向移動,增加嚙合間隙,印痕更靠近齒輪大端。如果用移動
小齒輪
收藏
編號:16720615
類型:共享資源
大?。?span id="f35p5nc" class="font-tahoma">54.72MB
格式:ZIP
上傳時間:2020-10-22
50
積分
- 關(guān) 鍵 詞:
-
汽車
減速器
結(jié)構(gòu)設(shè)計
nx
三維
- 資源描述:
-
汽車主減速器結(jié)構(gòu)設(shè)計含NX三維圖,汽車,減速器,結(jié)構(gòu)設(shè)計,nx,三維
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。