喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,【QQ:1304139763 可咨詢交流】=====================
喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,【QQ:1304139763 可咨詢交流】=====================
喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,【QQ:1304139763 可咨詢交流】=====================
HYDRAULIC AND PNEUM ATIC SYSTEM Haug,E. J. and Kwak,B. M.,“ Contact Stress Minimization by Contour Design,” London: Butterworths,1999 Hydraulic System There are only three basic methods of transmitting power:electrical, mechanical,and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system . To properly determine which principle method to use,it is important to know the salient features of each type. For example,fluid systems can transmit power more economically over greater distances than can mechanical types. However,fluid systems are restricted to shorter distances than are electrical systems. Hydraulic power transmission system are concerned with the generation, modulation,and control of pressure and flow,and in general such system sin clued: 1. Pumps which convert available power from the prime mover to hydraulic power at the actuator. 2. Valves which control the direction of pump-flow,the level of power produced,and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level. 3. Actuators which convert hydraulic power to usable mechanical power output at the point required. 4. The medium,which is a liquid,provides rigid transmission and control as well as lubrication of components,sealing in valves,and cooling of the system . 5. Connectors which link the various system components,provide power conductors for the fluid under pressure,and fluid flow return to tank (reservoir). 6. Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid. Hydraulic systems are used in industrial applications such as stamping presses, steells,and general manufacturing,agricultural machines,mining industry,aviation, spacehnology,deep-sea exploration,transportation,marine technology,and offshore gas and petroleum exploration. In short,very few people get through a day of their lives without somehow benefiting from the technology of hydraulics. The secret of hydraulic systems success and widespread use is its versatility and manability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also,power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example,the performance of an electromagnet is limited by the saturation limit of steel. On the other hand,the power limit of fluid systems is limited only by the strength capacity of the material. Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes,and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories. 1. Ease and accuracy of control. By the use of simple levers and push buttons,the operator of a fluid power system can readily start,stop, speed up or slow down,and position forces which provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch. Fig.13-1 shows a fluid power system which allows an aircraft pilot to raise and lower his landing gear. When the pilot-moves a small control valve in one direction,oil under pressure flows to one end of the cylinder to lower the landing gear. To retract the landing gear,the pilot moves the valve lever in the opposite direction,allowing oil to flow into the other end of the cylinder. 2. Multiplication of force. A fluid power system( without using cumbersome gears,pulleys,and levers)can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output. 3. Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute,a few revolutions per hour,or thousands of revolutions per minute. 4. Simplicity, safety, economy. In general,fluid power systems use fewer moving parts than comparable mechanical or electrical systems. Thus,they are simpler tomaintain and operate. This,in turn,maximizes safety,compactness,and reliability. For example,a new power steering control designed has made all other kinds of power systems obsolete on many off-highway vehicles. The steering unit consists of a manually operated directional control valve and meter in a single body. Because the steering unit is fully fluid-linked,mechanical linkages,universal joints,bearings,reduction gears,etc. are eliminated. This provides a simple,compact system .In addition,very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of control space require a small steering wheel and it becomes necessary to reduce operator fatigue. Additional benefits of fluid power systems include instantly reversible motion,automatic protection against overloads,and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power,it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy,and leakage is impossible to completely eliminate. Also,most hydraulic oils can cause fires if an oil leak occurs in an area of hot equipment. Pneumatic System Pneumatic systems use pressurized gases to transmit and control power. As the name implies,pneumatic systems typically use air(rather than some other gas)as the fluid medium because air is a safe,low-cost,and readily available fluid. It is particularly safe in environments where an electrical spark could ignite leaks from system components. In pneumatic systems,compressors are used to compress and supply the necessary quantities of air. Compressors are typically of the piston,vane or screw type. Basically a compressor increases the pressure of a gas by reducing its volume as described by the perfect gas laws. Pneumatic systems normally use a large centralized air compressor which is considered to be an infinite air source similar to an electrical system where you merely plug into an electrical outlet for electricity. In this way,pressurized air can be piped from one source to various locations throughout an entire industrial plant. The compressed air is piped to each circuit through an air filter to remove contaminants which might harm the closely fitting parts of pneumatic components such as valve and cylinders. The air then flows through aprs sure regulator which reduces the pressure to the desired level for the particular circuit application. Because air is not a good lubricant(contains about 20% oxygen),pneumatics systems required a lubricator to inject a very fine mist of oil into the air discharging from the pressure regulator. This prevents wear of the closely fitting moving parts of pneumatic components. Free air from the atmosphere contains varying amounts of moisture. This moisture can be harmful in that it can wash away lubricants and thus cause excessive wear and corrosion. Hence,in some applications,air driers are needed to remove this undesirable moisture. Since pneumatic systems exhaust directly into the atmosphere,they are capable of generating excessive noise. Therefore,mufflers are mounted on exhaust ports of air valves and actuators to reduce noise and prevent operating personnel from possible injury resulting not only from exposure to noise but also from high-speed airborne particles. There are several reasons for considering the use of pneumatic systems instead of hydraulic systems. Liquids exhibit greater inertia than do gases. Therefore,in hydraulic systems the weight of oil is a potential problem when accelerating and decelerating actuators and when suddenly opening and closing valves. Due to Newtons law of motion(force equals mass multiplied by acceleration),the force required to accelerate oil is many times greater than that required to accelerate an equal volume of air. Liquids also exhibit greater viscosity than do gases. This results in larger frictional pressure and power losses. Also,since hydraulic systems use a fluid foreign to the atmosphere,they require special reservoirs and no eak system designs. Pneumatic systems use air which is exhausted directly back into the surrounding environment. Generally speaking,pneumatic systems are less expensive than hydraulic systems. Compressors are typically of the piston,vane or screw type. Basically a compressor increases the pressure of a gas by reducing its volume as described by the perfect gas laws. Pneumatic systems normally use a large centralized air compressor which is considered to be an infinite air source similar to an electrical system where you merely plug into an electrical outlet for electricity. In this way,pressurized air can be piped from one source to various locations throughout an entire industrial plant. The compressed air is piped to each circuit through an air filter to remove contaminants which might harm the closely fitting parts of pneumatic components such as valve and cylinders. The air then flows through aprs sure regulator which reduces the pressure to the desired level for the particular circuit application. Because air is not a good lubricant(contains about 20% oxygen),pneumatics systems required a lubricator to inject a very fine mist of oil into the air discharging from the pressure regulator. However,because of the compressibility of air,it is impossible to obtain precise controlled actuator velocities with pneumatic systems. Also,precise positioning control is not obtainable. While pneumatic pressures are quite low due to compressor design limitations(less than 250 psi),hydraulic pressures can be as high as10,000 psi. Thus,hydraulics can be high-power systems, whereas pneumatics are confined to low-power applications. Industrial applications of pneumatic systems are growing at a rapid pace. Typical examples include stamping,drilling,hoist,punching,clamping,assembling, riveting,materials handling,and logic controlling operations. 編號:
畢業(yè)設(shè)計(jì)(論文)任務(wù)書
題 目: 液壓機(jī)主機(jī)結(jié)構(gòu)
設(shè)計(jì)與計(jì)算
學(xué) 院: 機(jī)電工程學(xué)院
專 業(yè): 機(jī)械設(shè)計(jì)制造及自動化
學(xué)生姓名: 李玉寒
學(xué) 號: 1000110121
指導(dǎo)教師單位: 機(jī)電工程學(xué)院
姓 名: 宋宜梅
職 稱: 教 授
題目類型:¨理論研究 ¨實(shí)驗(yàn)研究 t工程設(shè)計(jì) ¨工程技術(shù)研究 ¨軟件開發(fā)
2013年12月13日
一、畢業(yè)設(shè)計(jì)(論文)的內(nèi)容
液壓機(jī)是利用液壓傳動技術(shù)進(jìn)行加工的設(shè)備,在國民經(jīng)濟(jì)的各個(gè)領(lǐng)域都得到廣泛的應(yīng)用,如鍛造液壓機(jī),模鍛液壓機(jī)、沖壓液壓機(jī)、制造炸藥及火箭固體燃料用的液壓機(jī),萬能液壓機(jī)等。它們具有許多優(yōu)點(diǎn):如結(jié)構(gòu)簡單,結(jié)構(gòu)布局靈活;可以根據(jù)工藝要求來靈活改變其壓力與行程;可以根據(jù)工藝要求十分方便的在各種部位布置所需的液壓缸;與機(jī)械壓力機(jī)相比,具有壓力和速度可在廣泛的范圍內(nèi)無級調(diào)速;可在任意位置輸出全部功率和保持所需壓力;各執(zhí)行機(jī)構(gòu)動作可很方便地達(dá)到所希望的配合關(guān)系;振動小、易于實(shí)現(xiàn)計(jì)算機(jī)控制及自動控制等等。
本項(xiàng)目主要內(nèi)容有:設(shè)計(jì)前查閱相關(guān)資料,了解四柱式通用液壓機(jī)的工作原理、設(shè)計(jì)過程,設(shè)計(jì)一臺四柱式通用液壓機(jī)主機(jī)部分。通過工作要求計(jì)算出液壓機(jī)的主要技術(shù)規(guī)格,進(jìn)行多種四柱式液壓機(jī)的方案論證比較,選出最優(yōu)設(shè)計(jì)方案。根據(jù)最優(yōu)方案,依次設(shè)計(jì)完成主機(jī)結(jié)構(gòu)、液壓系統(tǒng)和泵站的設(shè)計(jì)計(jì)算。進(jìn)行動力系統(tǒng)設(shè)計(jì)計(jì)算、傳動系統(tǒng)設(shè)計(jì)計(jì)算及必要的校核計(jì)算;完成總裝配圖及主要零部件圖的繪制,編制設(shè)計(jì)計(jì)算說明書等。
二、畢業(yè)設(shè)計(jì)(論文)的要求與數(shù)據(jù)
本液壓機(jī)根據(jù)帕斯卡原理設(shè)計(jì)成一種利用液體壓力能來傳遞能量的機(jī)器。一般由液壓機(jī)主機(jī)、液壓操縱系統(tǒng)及泵站三大部分組成。
本液壓機(jī)設(shè)計(jì)的基本要求為公稱壓力:630噸,工作行程:700毫米,工作空間高度:1120毫米;要求設(shè)計(jì)結(jié)構(gòu)合理,加工方便,工藝性好,設(shè)計(jì)規(guī)范符合相關(guān)的國家標(biāo)準(zhǔn)要求。
三、畢業(yè)設(shè)計(jì)(論文)應(yīng)完成的工作
1、完成二萬字左右的畢業(yè)設(shè)計(jì)說明書(論文);在畢業(yè)設(shè)計(jì)說明書(論文)中必須包括詳細(xì)的300-500個(gè)單詞的英文摘要;
2、獨(dú)立完成與課題相關(guān),不少于四萬字符的指定英文資料翻譯(附英文原文);
3、繪圖工作量折合A0圖紙3張以上,其中必須包含兩張A3以上的計(jì)算機(jī)繪圖圖紙;
四、應(yīng)收集的資料及主要參考文獻(xiàn)
[1] 俞新陸. 液壓機(jī)的設(shè)計(jì)與應(yīng)用[M]. 北京:機(jī)械工業(yè)出版社,2007.
[2] 吳生富. 150MN鍛造液壓機(jī)[M]. 北京:機(jī)械工業(yè)出版社,2003.
[3] 吳宗澤. 機(jī)械設(shè)計(jì)實(shí)用手冊[M]. 北京:國防工業(yè)出版社,2012.11
[4] 天津市鍛壓機(jī)床廠.中小型液壓機(jī)設(shè)計(jì)計(jì)算[M]. 天津:天津人民出版社,1987.
[5] 濮良貴. 機(jī)械設(shè)計(jì)[M]. 北京:高教出版社,2001.6.
[6] 孫桓. 機(jī)械原理[M]. 北京:高等出版社,2001.5.
[7] 陳啟松. 液壓傳動與控制手冊[M]. 上海:科學(xué)技術(shù)出版社,2006.
[8] 符煒等. 機(jī)構(gòu)設(shè)計(jì)學(xué). 長沙:湖南大學(xué)出版社,2001.
[9] 王明強(qiáng). 計(jì)算機(jī)輔助設(shè)計(jì)技術(shù)[M]. 北京:科學(xué)出版社,2002.
[10] Homer D·Eckhardt.Kinematic Design of Machines and Mechanisms. McGraw-Hill.1998.
五、試驗(yàn)、測試、試制加工所需主要儀器設(shè)備及條件
計(jì)算機(jī)一臺
CAD設(shè)計(jì)軟件
任務(wù)下達(dá)時(shí)間:
2013年12月17日
畢業(yè)設(shè)計(jì)開始與完成時(shí)間:
2013年12月17日至 2014年05 月26日
組織實(shí)施單位:
教研室主任意見:
簽字: 2013年12月14日
院領(lǐng)導(dǎo)小組意見:
簽字: 2013 年12月16日
編號:
畢業(yè)設(shè)計(jì)(論文)開題報(bào)告
題 目:液壓機(jī)主機(jī)結(jié)構(gòu)設(shè)計(jì)與計(jì)算
院 (系): 機(jī)電工程學(xué)院
專 業(yè): 機(jī)械設(shè)計(jì)制造及自動化
學(xué)生姓名: 李玉寒
學(xué) 號: 1000110121
指導(dǎo)教師單位: 機(jī)電工程學(xué)院
姓 名: 宋宜梅
職 稱: 教 授
題目類型:¨理論研究 ¨實(shí)驗(yàn)研究 t工程設(shè)計(jì) ¨工程技術(shù)研究 ¨軟件開發(fā)
2013年12月27日
1. 畢業(yè)設(shè)計(jì)的主要內(nèi)容、重點(diǎn)和難點(diǎn)等
一、主要內(nèi)容
液壓機(jī)是利用液壓傳動技術(shù)進(jìn)行加工的設(shè)備,在國民經(jīng)濟(jì)的各個(gè)領(lǐng)域都得到廣泛的應(yīng)用,如鍛造液壓機(jī),模鍛液壓機(jī)、沖壓液壓機(jī)、制造炸藥及火箭固體燃料用的液壓機(jī),萬能液壓機(jī)等。
設(shè)計(jì)工作的主要內(nèi)容有:
1、查閱資料,了解四柱式通用液壓機(jī)的工作原理、設(shè)計(jì)過程,設(shè)計(jì)一臺四柱式通用液壓機(jī)主機(jī)部分。
2、通過工作要求計(jì)算出液壓機(jī)的主要技術(shù)規(guī)格,進(jìn)行多種四柱式液壓機(jī)的方案論證比較,選出最優(yōu)設(shè)計(jì)方案。根據(jù)最優(yōu)方案,依次設(shè)計(jì)完成主機(jī)結(jié)構(gòu)、液壓系統(tǒng)和泵站的設(shè)計(jì)計(jì)算。
3、進(jìn)行動力系統(tǒng)設(shè)計(jì)計(jì)算、傳動系統(tǒng)設(shè)計(jì)計(jì)算及必要的校核計(jì)算;完成總裝配圖及主要零部件圖的繪制,編制設(shè)計(jì)計(jì)算說明書等。
二、設(shè)計(jì)重點(diǎn)
1、計(jì)算出液壓機(jī)的主要技術(shù)規(guī)格,進(jìn)行多種四柱式液壓機(jī)的方案論證比較,選出最優(yōu)設(shè)計(jì)方案。
2、根據(jù)最優(yōu)方案,依次設(shè)計(jì)完成主機(jī)結(jié)構(gòu)、液壓系統(tǒng)和泵站的設(shè)計(jì)計(jì)算。
3、進(jìn)行動力系統(tǒng)設(shè)計(jì)計(jì)算、傳動系統(tǒng)設(shè)計(jì)計(jì)算及必要的校核計(jì)算。
4、繪制總體裝配圖和重要零件圖。
5、撰寫設(shè)計(jì)說明論文。
三、設(shè)計(jì)難點(diǎn)
1、最優(yōu)設(shè)計(jì)方案的確定。
2、動力系統(tǒng)、傳動系統(tǒng)的設(shè)計(jì)計(jì)算。
3、總體裝配圖的繪制。
4、設(shè)計(jì)說明書的撰寫。
2.準(zhǔn)備情況(查閱過的文獻(xiàn)資料及調(diào)研情況、現(xiàn)有設(shè)備、實(shí)驗(yàn)條件等)
一、 查閱過的文獻(xiàn)資料及調(diào)研情況
[1] 俞新陸. 液壓機(jī)的設(shè)計(jì)與應(yīng)用[M]. 北京:機(jī)械工業(yè)出版社,2007.
[2] 俞新陸. 液壓機(jī)現(xiàn)代設(shè)計(jì)理論[M]. 北京:機(jī)械工業(yè)出版社,1987.
[3] 吳宗澤. 機(jī)械設(shè)計(jì)實(shí)用手冊[M]. 北京:機(jī)械工業(yè)出版社,2002.
[4] 天津市鍛壓機(jī)床廠.中小型液壓機(jī)設(shè)計(jì)計(jì)算[M]. 天津:天津人民出版社,1987.
[5] 濮良貴. 機(jī)械設(shè)計(jì)[M]. 北京:高教出版社,2001.6.
[6] 孫桓. 機(jī)械原理[M]. 北京:高等出版社,2001.5.
[7] 俞新陸. 液壓機(jī)[M]. 北京:機(jī)械工業(yè)出版社,1982.
[8] 符煒等. 機(jī)構(gòu)設(shè)計(jì)學(xué). 長沙:湖南大學(xué)出版社,2001.
[9] 王明強(qiáng). 計(jì)算機(jī)輔助設(shè)計(jì)技術(shù)[M]. 北京:科學(xué)出版社,2002.
[10] Homer D·Eckhardt.Kinematic Design of Machines and Mechanisms. McGraw-Hill.1998.
二、 現(xiàn)有設(shè)備、實(shí)驗(yàn)條件
1、 計(jì)算機(jī)一臺。
2、 AutoCAD2010設(shè)計(jì)軟件。
3、 UG NX 8.0 設(shè)計(jì)軟件。
4、 Office 辦公軟件。
3、 實(shí)施方案、進(jìn)度實(shí)施計(jì)劃及預(yù)期提交的畢業(yè)設(shè)計(jì)資料
一、實(shí)施方案
1、查閱以上參考文獻(xiàn)積累知識,和老師溝通并分析整體流程,進(jìn)行多種方案論證比較,確定最后的設(shè)計(jì)方案。
2、依次設(shè)計(jì)計(jì)算主機(jī)結(jié)構(gòu)、液壓系統(tǒng)和泵站,設(shè)計(jì)計(jì)算動力系統(tǒng)、傳動系統(tǒng)并進(jìn)行必要的校核計(jì)算。
3、繪制主要零部件圖和總體裝配圖。
4、設(shè)計(jì)說明說的編寫。
二、進(jìn)度實(shí)施計(jì)劃
2014-01-01~2014-03-01 查找相關(guān)資料,列出時(shí)間安排表,翻譯外文資料;
2014-03-02~2014-03-10 計(jì)算出液壓機(jī)的主要技術(shù)規(guī)格,進(jìn)行多種四柱式液壓機(jī)的方案論證比較,選出最優(yōu)設(shè)計(jì)方案;
2014-03-11~2014-04-10 根據(jù)最優(yōu)方案,依次設(shè)計(jì)完成主機(jī)結(jié)構(gòu)、液壓系統(tǒng)和泵站的設(shè)計(jì)計(jì)算;
2014-04-11~2014-05-10 進(jìn)行動力系統(tǒng)設(shè)計(jì)計(jì)算、傳動系統(tǒng)設(shè)計(jì)計(jì)算及必要的校核計(jì)算,完成總裝配圖及主要零部件圖的繪制;
2014-05-11~2014-05-26 設(shè)計(jì)說明書的編寫。
三、預(yù)期提交的畢業(yè)設(shè)計(jì)資料
1、完成二萬字左右的畢業(yè)設(shè)計(jì)說明書(論文);在畢業(yè)設(shè)計(jì)說明書(論文)中必須包括詳細(xì)的300-500個(gè)單詞的英文摘要;
2、獨(dú)立完成與課題相關(guān),不少于四萬字符的指定英文資料翻譯(附英文原文);
3、繪圖工作量折合A0圖紙3張以上,其中必須包含兩張A3以上的計(jì)算機(jī)繪圖圖紙。
指導(dǎo)教師意見
指導(dǎo)教師(簽字):
2013年12月 日
開題小組意見
開題小組組長(簽字):
2014年1 月 日
院(系、部)意見
主管院長(系、部主任)簽字:
2014年1月 日
- 4 -
2014年機(jī)電工程學(xué)院畢業(yè)設(shè)計(jì)(論文)進(jìn)度計(jì)劃表
學(xué)生姓名:李玉寒 學(xué)號:1000110121
序號
起止日期
計(jì)劃完成內(nèi)容
實(shí)際完成內(nèi)容
檢查日期
檢查人簽名
1
2013.12.17—12.23
查閱有關(guān)液壓機(jī)設(shè)計(jì)的資料
2
2013.12.24—12.30
查找翻譯資料
3
2013.12.31-2014.1.6
撰寫并提交開題報(bào)告
4
2014.1.7-1.13
計(jì)算和方案比較,確定最優(yōu)方案
5
3.4-3.10
設(shè)計(jì)計(jì)算主機(jī)結(jié)構(gòu)
6
3.11-3.17
設(shè)計(jì)計(jì)算液壓系統(tǒng)和泵站
7
3.18-3.24
設(shè)計(jì)計(jì)算動力系統(tǒng)
8
3.25-3.31
設(shè)計(jì)計(jì)算傳動系統(tǒng)
(本表同時(shí)作為指導(dǎo)教師對學(xué)生的16次考勤記錄)
2014年機(jī)電工程學(xué)院畢業(yè)設(shè)計(jì)進(jìn)度計(jì)劃表(續(xù))
學(xué)生姓名: 學(xué)號:
序號
起止日期
計(jì)劃完成內(nèi)容
實(shí)際完成內(nèi)容
檢查日期
檢查人簽名
9
4.01-4.07
校核計(jì)算
10
4.08-4.14
繪制裝配圖、拆畫零件圖
11
4.15-4.21
繪制裝配圖、拆畫零件圖
12
4.22-4.28
修改、復(fù)核、完善設(shè)計(jì),翻譯相關(guān)英文材料
13
4.29-5.05
翻譯相關(guān)英文材料
14
5.06-5.12
撰寫設(shè)計(jì)說明書
15
5.13-5.19
撰寫設(shè)計(jì)說明書
16
5.20-5.26
完成畢業(yè)設(shè)計(jì),提交論文
任務(wù)下達(dá)時(shí)間:2013年12月17日 (本表同時(shí)作為指導(dǎo)教師對學(xué)生的16次考勤記錄)
第 2 頁 共 2 頁