一種攀爬機器機械部分的設計-爬桿機器人含SW三維及16張CAD圖
一種攀爬機器機械部分的設計-爬桿機器人含SW三維及16張CAD圖,一種,攀爬,機器,機械,部分,部份,設計,機器人,sw,三維,16,cad
編號:
XX設計任務書
題 目: 一種攀爬機器機械部分的設計
學 院:
專 業(yè):
學生姓名:
學 號:
指導教師單位:
姓 名:
職 稱:
題目類型:¨理論研究 ¨實驗研究 t工程設計 ¨工程技術(shù)研究 ¨軟件開發(fā)
年12月28日
一、畢業(yè)設計(論文)的內(nèi)容
本設計要求學生攀爬機器機械部分為設計對象,旨在培養(yǎng)學生嚴謹?shù)姆治鼋鉀Q問題的能力和綜合運用專業(yè)基礎知識進行實際設計的能力。需要學生充分運用所學的機械原理、機械設計、裝備設計制造、制圖、工藝、公差與技術(shù)測量等機械專業(yè)知識進行機器的方案設計、零件的結(jié)構(gòu)尺寸設計計算、工藝卡片編制等。
1、查閱文獻資料,進行相關(guān)調(diào)研,了解目前已有的攀爬機械的工作原理及結(jié)構(gòu)設計特點,做好設計前的準備工作。
2、根據(jù)給定的設計數(shù)據(jù)要求,提出攀爬機器的設計方案(兩種及兩種以上),進行比較后選出最佳方案作為設計對象;
3、對攀爬機器的各部分結(jié)構(gòu)尺寸進行具體設計、進行必要的設計計算及受力分析,并選擇合適的零件材料;
4、運用CAD、CAXA等CAD工具進行輔助設計,完成攀爬機器的整體結(jié)構(gòu)的設計,繪制其零件圖、裝配圖。
5、熟悉零件的加工工藝,對典型零件進行加工工藝路線分析;
6、總結(jié)設計數(shù)據(jù),整理設計思路,編寫設計說明書。
二、畢業(yè)設計(論文)的要求與數(shù)據(jù)
1、設計的機械要能負重5kg攀爬直徑120-200內(nèi)的直桿,要求運動可靠。
2、設計該攀爬機器的零部件,制定出主要零部件的工藝規(guī)程,并編制主要零部件的制造工藝;
3、采用CAD設計軟件(如:CAXA、SolidWorks、AutoCAD等)對零部件進行實體建模、繪制其二維裝配圖與零件圖。
4、編寫設計說明書。
三、畢業(yè)設計(論文)應完成的工作
1、完成二萬字左右的畢業(yè)設計說明書(論文),在畢業(yè)設計說明書(論文)中必須包括詳細的300-500個單詞的英文摘要;對零件進行必要設計計算、對于有標準規(guī)定的零部件,必須嚴格按照標準要求進行選擇或設計,編制出主要零件的加工工藝卡,要求符合實際加工情況,合理選擇零件的加工機床;
2、獨立完成與課題相關(guān),不少于四萬字符的指定英文資料翻譯(附英文原文),要求排版整齊,無明顯語法、字詞的錯誤;
3、繪制出所設計攀爬機器的零件圖和裝配圖,要求折算到A0圖紙3張以上,其中必須包含兩張A3以上的計算機繪圖圖紙,要求圖形繪制符合國家標準,方便讀圖,重要零件的關(guān)鍵尺寸和公差要標注完整正確,并配注合理的技術(shù)要求。
四、應收集的資料及主要參考文獻
[1]. 左健民. 液壓與氣壓傳動(第4版).北京:機械工業(yè)出版社,2011.
[2]. 濮良貴、紀名剛等. 機械設計(第八版).北京:高等教育出版社,2006.
[3]. 甘永立.幾何量公差與檢測(第七版).上海:上??萍即髮W出版社,2005.
[4]. 王運炎,葉尚川. 機械工程材料(第2版). 北京:機械工業(yè)出版社,2004.
[5]. 《實用機械設計手冊》編寫組.實用機械手冊(上).北京:機械工業(yè)出版社,1998.
[6]. 機械設計手冊編委會.機械設計手冊(新版)第4卷.北京:機械工業(yè)出版社,2004.
[7]. 機械設計手冊編委會.機械設計手冊(新版)第3卷.北京:機械工業(yè)出版社,2004.
[8]. 詹友剛.SolidWorks 2012機械設計教程.北京:機械工業(yè)出版社,2012.
[9]. HOWELL L L. Compliant mechanisms[M]. New York:Wiley Interscience,2001.
[10].KIM C J. A conceptual approach to the computational synthesis of compliant
mechanisms[D]. Michigan :University of Michigan,2005.
五、試驗、測試、試制加工所需主要儀器設備及條件
計算機一臺,并裝有CAD設計軟件(AutoCAD,CAXA,UG,Pro/E呀Solidworks)等。
任務下達時間:
20XX年12月28日
畢業(yè)設計開始與完成時間:
20XX年12月28日至 2016年05 月22日
組織實施單位:
機械電子工程系
教研室主任意見:
簽字: 20XX年12月30日
院領導小組意見:
簽字: 2015年12月31日
編號:
XX設計(XX)開題報告
題 目:
院 (系):
專 業(yè):
學生姓名:
學 號:
指導教師單位:
姓 名:
職 稱:
題目類型:¨理論研究 ¨實驗研究 t工程設計 ¨工程技術(shù)研究 ¨軟件開發(fā)
年3月1日
1.畢業(yè)設計的主要內(nèi)容、重點和難點等
1.設計內(nèi)容:
1、查閱文獻資料,進行相關(guān)調(diào)研,了解目前已有的攀爬機械的工作原理及結(jié)構(gòu)設計特點,做好設計前的準備工作。
2、根據(jù)給定的設計數(shù)據(jù)要求,提出攀爬機器的設計方案(兩種及兩種以上),進行比較后選出最佳方案作為設計對象;
3、對攀爬機器的各部分結(jié)構(gòu)尺寸進行具體設計、進行必要的設計計算及受力分析,并選擇合適的零件材料;
4、運用CAD、CAXA等CAD工具進行輔助設計,完成攀爬機器的整體結(jié)構(gòu)的設計,繪制其零件圖、裝配圖。
5、熟悉零件的加工工藝,對典型零件進行加工工藝路線分析;
6、總結(jié)設計數(shù)據(jù),整理設計思路,編寫設計說明書;
7、獨立完成與課題相關(guān),不少于四萬字符的指定英文資料翻譯(附英文原文);
8、完成相關(guān)設計計算及機械設計圖(要求繪圖工作量折合A0圖紙3張以上)。
2、重點難點:
本次畢設的重點主要是設計爬竿機器人的機械控制結(jié)構(gòu)、結(jié)構(gòu)方案的確定,包括如何實現(xiàn)攀爬直桿和負重運輸。齒輪和直桿的工藝計算和工藝選擇。難點在于所選擇的方案的合理性和可行性。
2.準備情況(查閱過的文獻資料及調(diào)研情況、現(xiàn)有設備、實驗條件等)
1.課題研究背景
機器人(Robot)是自動執(zhí)行工作的機器裝置。它既可以接受人類指揮, 又可以運行預先編排的程序,也可以根據(jù)以人工智能技術(shù)制定的原則綱領行 動。國際上對機器人的概念已經(jīng)逐漸趨近一致。一般說來,人們都可以接 受這種說法,即機器人是靠自身動力和控制能力來實現(xiàn)各種功能的一種 機器。聯(lián)合國標準化組織采納了美國機器人協(xié)會給機器人下的定義:“一 種可編程和多功能的,用來搬運材料、零件、工具的操作機;或是為了 執(zhí)行不同的任務而具有可改變和可編程動作的專門系統(tǒng)?!?而機器人學是一門高度交叉的前沿學科,是典型的的機電一體化技術(shù)系 統(tǒng)。它涉及機械學電子工程學計算機科學與工程人工智能生物學人 類學社會等眾多領域。 在機器人技術(shù)快速發(fā)展的今天,不管是作為一名現(xiàn)代工程師,還是理工科 大學學生,都有必要學習,掌握一些機器人學方面的知識,特別是機械專業(yè)的 學生,機器人技術(shù)可以說是一門必修課。為了滿足社會的需求,攀爬機器人的研究力度越來越大。目前,攀爬機器人應用更為廣泛,已在消防、核工業(yè)、石化行業(yè)、建筑行業(yè)、高空作業(yè)等危險領域得到了廣泛應用;其目的是代替人類, 人類帶來了極大的工作效益和安全保障,從而受到人們的高度重視。鑒于以上特點,開發(fā)具有攀爬功能的機器人代替人去從事危險工作將有重要意義。目前,很多高校和科研院所已研制出或正在研制攀爬機器?麻省理工學院研制了一種能爬窗梁的機器人shady3D南京航空航天大學研制了仿壁虎機器人,該機器人能夠在豎直墻面和天花板上進行運動。國科學院沈陽自動化研究所研制了一種5自由度爬壁 機器人,不僅能實現(xiàn)爬行和轉(zhuǎn)向,且能在壁面之間實現(xiàn)過渡援式吸附、干性黏合劑吸附和負壓吸附。
2.現(xiàn)有設備
(1)計算機一臺;
(2)設計軟件(Solidworks2013、CAXA2013)。
3.參考文獻:
[1] 江勵.??雙手爪式模塊化仿生攀爬機器人的研究[D]. 華南理工大學.2012
[2] 蔡傳武.??爬桿機器人的攀爬控制[D]. 華南理工大學 2011
[3] 陳亮.??焊接機器人路徑規(guī)劃問題的算法研究[D]. 武漢科技大學. 2010
[4] 郭敏.??帶視覺的雙臂機器人手臂無碰撞路徑規(guī)劃[D]. 東北大學. 2008
[5] Wing Kwong Chung,Yangsheng Xu,Ou Ma.??Minimum Energy Demand Locomotion on Space Station[J]. Journal of Robotics . 2013
[6] Tin Lun Lam,Yangsheng Xu.??Motion planning for tree climbing with inchworm‐like robots[J]. J. Field Robotics . 2012 (1)
[7] Tin Lun Lam,Yangsheng Xu.??Biologically inspired tree‐climbing robot with continuum maneuvering mechanism[J]. J. Field Robotics . 2012
[8] 蔡傳武. 爬桿機器人的攀爬控制[D]. 華南理工大學 .2011
[9] 周芳,朱齊丹,趙國良.??基于改進快速搜索隨機樹法的機械手路徑優(yōu)化[J]. 機械工程學報. 2011(11)
[10] 江勵,管貽生,蔡傳武,朱海飛,周雪峰,張憲民.??仿生攀爬機器人的步態(tài)分析[J]. 機械工程學報. 2010(15)
[11] 夏澤洋,陳懇.??仿人機器人足跡規(guī)劃建模及算法實現(xiàn)[J]. 機器人. 2008
[4] M. Tavakoli, L. Marques, A. T. de Almeida. 3dclimber: Climbing and Manipulation Over 3d Structures}J}. The Journal of Mechatronics, 2010, 21
3、實施方案、進度實施計劃及預期提交的畢業(yè)設計資料
1.實施方案
(1)掌握一種三維制圖軟件Pro/E?
(2)對攀爬機器人進行結(jié)構(gòu)設計?
(3)運用三維制圖軟件繪制攀爬爬行機器人的裝配圖[8]?
(4)繪制攀爬爬行機器人的主要零件圖?
(5)完成畢業(yè)設計說明書?
2.進度實施計劃
第1周:搜集整理并認真閱讀課題相關(guān)的中文及外文文獻;?
第2周:對設計過程制定確切的計劃,撰寫開題報告;
第3-4周:完成畢業(yè)設計課題方案的設計,確定出符合要求的方案;
第5-6周:繪制出爬桿機器人的結(jié)構(gòu)圖;
第7-8周:完成爬桿機器人裝配圖、零部件設計,確定各個零部件的尺寸;
第9-10周:整個機器人的裝配方案,并繪制出二維圖、三維圖;
第11周:呈交指導老師審閱,檢查,修改圖紙;
第12-15周:完整編制出設計說明書,打印裝訂說明書、設計圖紙以及其他資料;第16周:完成答辯前的其他準備工作,準備好答辯。
3.預期提交畢設設計資料
1、 二萬字左右的一種攀爬機器機械部分的設計設計說明書(論文),說明書給出三個以上可行方案并進行比較,確定一個最佳方案,按最佳方案進行具體的、詳細的設計系統(tǒng),設計過程有理論分析、強度剛度分析,附有任務書
2、不少于四萬字符的指定英文資料翻譯(附英文原文);
3、二維工程圖、零件裝配圖、非標準零件圖(折合3張以上A0圖紙)。
指導教師意見
指導教師(簽字):
20XX年03月 日
開題小組意見
開題小組組長(簽字):
20XX年03 月 日
院(系、部)意見
主管院長(系、部主任)簽字:
20XX年03月 日
- 6 -
Research article
A hybrid pole climbing and manipulating robot with minimum DOFs for construction and service applications
M. Tavakoli, M.R. Zakerzadeh, G.R. Vossoughi and S. Bagheri
Sharif University of Technology, Tehran, Iran
Abstract
Purpose – Aims to describe design, prototyping and characteristics of a pole climbing/manipulating robot with ability of passing bends and branches of the pole.
Design/methodology/approach – Introducing a hybrid (parallel/serial) four degree of freedom (DOF) mechanism as the main part of the robot and also introduces a unique gripper design for pole climbing robots.
Findings – Finds that a robot, with the ability of climbing and manipulating on poles with bends and branches, needs at least 4 DOFs. Also an electrical cylinder is a good option for climbing robots and has some advantages over pneumatic or hydraulic cylinders.
Research limitations/implications – The robot is semi-industrial size. Design and manufacturing of an industrial size robot are a good suggestion for future works.
Practical implications – With some changes on the gripper module and the last tool module, the robot is able to do some service works like pipe testing, pipe/pole cleaning, light bulb changing in highways etc.
Originality/value – Design and manufacturing of a pole-climbing and manipulating robot with minimum DOFs for construction and service works.
Keywords Design, Parallel programming, Kinematics, Poles, Robotics
Paper type Research paper
178
Introduction
Climbing robots have received much attention in recent years due to their potential applications in construction and tall building maintenance, agricultural harvesting, highways and bridge maintenance, shipyard production facilities, etc.
Use of serial multi-legged robots for climbing purposes requires greater degrees of freedom (DOFs), without necessarily improving the ability of robots to progress in a complex workspace. It is also well known that serial configurations demand a greater amount of torque at the joints, thus calling for larger and heavier actuators and resulting in smaller payload to weight ratio, which is critical in climbing robots. In contrast using parallel platforms can result in the decrease of the weight/power ratio, thus allowing for larger payloads.
The Emerald Research Register for this journal is available at
www.emeraldinsight.com/researchregister
Earlier research in this area has focused on six-DOF universal prismatic spherical (UPS) mechanisms (Merlet, 2000; To¨ nshoff, 1998).
Saltare′n et al. has modeled and simulated a parallel six- DOF parallel robot with pneumatic actuators. The modeled robot has a large payload capacity which is an important issue for industrial pole climbing robots (Salataren et al., 1999).
Later Aracil et al. fabricated a parallel robot for autonomous climbing along tubular structures. This robot uses the Gough- Stewart platform as a climbing robot. The platform actuators are six pneumatic cylinders with servo control. Their mechanism also used six cylinders as the grippers (three cylinders for each gripper) using a total of 12 actuators not counting the actuators needed for the manipulator arm (Aracil et al., 2003). The mechanism is rather complicated and has the ability of passing bends in any direction, making it suitable for traveling along trees and complex structures. So there is a need for a less complicated robot, which has the ability of traveling along human made and less complicated structures with minimum DOFs and minimum number of
The current issue and full text archive of this journal is available at
www.emeraldinsight.com/0143-991X.htm
Industrial Robot: An International Journal 32/2 (2005) 171– 178
q Emerald Group Publishing Limited [ISSN 0143-991X] [DOI 10.1108/01439910510582309]
This paper was first published at CLAWAR 2004, 7th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, 22-24 September 2004, Madrid, Spain.
This work has been made possible by a grant from the Tavanir Electric research Center. The authors would like to thank Tavanir for supporting this research.
A hybrid pole climbing and manipulating robot
M. Tavakoli, M.R. Zakerzadeh, G.R. Vossoughi and S. Bagheri
Industrial Robot: An International Journal
Volume 32 · Number 2 · 2005 · 171– 178
actuators. Furthermore, using pneumatic cylinders in the mechanism has the problem of transferring compressed air from the compressor to the cylinders.
But in recent years some industrial applications such as machine tools have resulted in more attention to parallel mechanisms with less than six DOFs. Most of the research in recent years have focused on three-DOF mechanisms (Pierrot et al., 2001; Gosselin et al., 1992b; Tsai, 1996).
Traveling along a pole or tubular structures with bends and branches requires four DOFs (two translations and two rotations along and perpendicular to the tubular axis). These same DOFs are also essential for most manipulation and repair tasks required in the pole climbing applications. More details on modeling of the mechanism and selection process of the planar parallel mechanism as the parallel part of the robot has been discussed in Vossoughi et al. (2004).
To the best knowledge of the authors, there is no four-DOF mechanism providing two translational and two rotational DOFs suitable for such operations. The mechanism proposed in this paper takes advantage of a parallel/serial mechanism providing two degrees of translation and two degrees of rotation along the desired axes (which will be described later). The parallel/serial robots also have the advantages of high rigidity of fully parallel manipulators and extended workspace of serial manipulators (Romdhane, 1999). Full kinematic analysis of the four-DOF mechanism has been presented completely in Zakerzadeh et al. (2004).
The mechanism also takes advantage of a novel gripper design, making it suitable for safe pole climbing operations.
Concept
As mentioned earlier, locomotion along tubular structures, with bends and branches, requires a minimum of four DOFs. These include Tz: a translational DOF for motion along the pole axis (Figure 1), Rz: a rotational DOF for rotation around the pole (Figure 2), Rx: a secondary rotational DOF for rotation around a radial direction of the pole (Figure 3).
Figure 1 Climbing along the pole
Figure 2 Rotation around the pole axis
Figure 3 Overtaking the bent section
Combination of the above three DOF with Tx a translational DOF for motion along the pole radial direction provides the necessary manipulability to perform the many necessary operations after reaching the target point on the pole (i.e. repair, maintenance or even manufacturing operations such as welding) (Figure 4).
The robot design
The proposed pole climbing robot consists of three main parts (Figure 5), the three-DOF planar parallel mechanism, the serial z-axis rotating mechanism and the grippers.
Combining the three-DOF planar parallel mechanism with a rotating mechanism around the pole axis provides two rotations and two translations, which is necessary to achieve the design objectives as explained in the last section.
Figure 4 Robot performing a welding operation
Figure 5 The pole climbing robot model
Furthermore, the linear cylinders used in the parallel manipulator are arranged to encircle the pole and thus reduce the grasp moments on the gripper.
One of the grippers is attached to a manipulator, and the other one is attached to the base of the rotating platform. As a result, the grippers have four DOF with respect to each other, allowing for movements along the poles with different cross- sections and geometric configurations.
The three-DOF planar three-RPR parallel three-RPR manipulator
A general planar three-legged platform with three DOFs consists of a moving platform connected to a fixed base by three simple kinematics chains. Each chain consists of three independent one DOF joints, one of which is active (Gosselin et al., 1992a). Hayes et al. (1999) showed that there are 1,653 distinct general planar three-legged platforms with three DOFs. For the proposed mechanism, the three-RPR mechanism has been selected as the planar parallel part of the robot.
The rotating mechanism
The rotating mechanism consists of a guide, a sliding unit, a gear set and a motor. Plate 1 shows the guide and sliding unit. The guide is a T-shape circular guide, which encircles the pole. The slider unit consists of a particular bearings arrangement, which can withstand the forces and torques generated during various maneuvers and maintains the robot stability in all its possible configurations. The slider holds the lower gripper and is driven by a motor with a simple gearing arrangement. By rotating the motor while keeping one of the grippers fixed (to the pole), the other gripper can rotate around the pole axis.
The grippers
The proposed gripper has a unique multi-fingered design, which is able to adapt to various pole cross sections and dimensions with only a single actuator. Each gripper consists of two v-shaped multi-fingered bodies, a double shaft motor, two right and left handed screws and two linear guides. Use of the particular multiple finger arrangement not only increases the torque handling capability of the gripper but also improves the adaptability of the gripper to different pole dimensions without having fingers interfere/collide with each other. Using ballscrews with a friction coefficient of 0.1, and two linear bearing which stand the load of the robot during the climbing process, the selected double shaft electric motor is rather small with respect to the weight of the robot. Plate 2 shows the fabricated gripper.
Plate 1 The serial rotating mechanism
Plate 2 The robot fabricated gripper
The combined actions of the various components in a typical pole climbing application are shown in Plates 3-5.
Table I shows the specifications of the prototype version
and the estimated specifications of the industrial version of robot.
The robot prototype
Following the kinematic analysis of the proposed mechanism (Vossoughi et al., 2004; Zakerzadeh et al., 2004), a prototype unit was designed and built for a hypothetical municipal light bulb change operation.
The prototype of the robot weighs 16 kg. The body of robot is fabricated from aluminum. The robot is driven by three dc motors and three electrical cylinders. Use of electrical cylinder rather than pneumatic or hydraulic cylinders simplifies the control of cylinders and increases the precision. Also there is no need for a compressor or pump. This also eliminates hydraulic or pneumatic tubes, which are not safe in pole climbing applications.
The electrical cylinders weigh 1.1 kg each. Each cylinder is able to exert a 800 N force and has a stroke of 200 mm and speed of 0.6 m/min.
Revolute joints in the planar parallel mechanism should be fabricated with a relatively high tolerance. Otherwise, the planar parallel mechanism will either be overconstrained or exhibit extra DOFs. In addition the assembly process precision is also highly important for the proper operation of the mechanism. To accommodate the light bulb change operations two miniature grippers have been used. One to carry the new lamp, and the other to remove the old lamp. The grippers are two small pneumatic grippers. Also a small reservoir with capacity of 300 cc has been used. A dome remote control camera has been attached to the manipulator to assist in the bulb changing operation using a joystick as the robot remote control teach pendent unit. The camera has two DOFs and can rotate around two perpendicular axes and is enveloped by a dome. Plate 6 shows the fabricated prototype.
Plate 7 shows the fabricated prototype moving along the pole axis, Plate 8 shows the fabricated prototype passing the bent section of pole and Plate 9 shows the fabricated prototype in the operation of light bulb changing.
Control of the robot
As mentioned earlier, the prototype unit is actuated by three electrical cylinders and three dc motors. Each motor has a control driver board, which is attached to a central PC.
Plate 3 The robot movement along pole axis
Plate 4 The robot rotation around pole axis
Plate 5 The robot is passing the bent section
Table I Estimated characteristic of the prototype version and the industrial version of robot
Number of linear actuators
Number of rotary actuators
Weight (kg)
Dimensions (cm)
Prototype
3
3
16
18 £ 25 £ 60
Industrial
3
3
30
50 £ 50 £ 100
Plate 6 The fabricated prototype
Plate 7 Moving of fabricated prototype along pole axis
Plate 8 The fabricated prototype is passing the bent section
The gripper motors are controlled using current feedback. Once the grippers touch the pole the current will increase to reach to a certain value thus exerting a proportional amount of force. Owing to the large gear ratio of the gripper’s dc motor the motor is not back-drivable. As a result in case of power failure, the gripper will continue to exert the force continuously, making it fail-safe in case of power failure.
The electrical cylinders comprise a dc motor, a gearing arrangement and an acme screw. Using a 500-pulse encoder
on the shaft of the dc motor, the cylinders have a precision of
0.1 mm in linear movements. Also using a 100-pulse encoder on the shaft of the serial rotating mechanism’s dc motor, the serial mechanism has a precision of 0.68 with the given gearing arrangement of the serial mechanism.
An array of touch switches, which have been assembled on the upper grippers, not only detect bend and other possible barriers on a pole, but also can detect the angle of a bent section of the pole with respect to the present direction of the robot gripper. This will allow the serial mechanism to rotate
Plate 9 The fabricated prototype in changing bulb operation
in a way that the robot mechanism is positioned properly for passing along the bent section.
The control system architecture includes a higher level
inverse kinematic module and a lower lever PID-based joint level position control system.
Conclusion
In this paper, a solution to the autonomous robot pole climbing problem is presented. A unique multi-fingered gripper with the ability to adapt to various poles cross sections and dimensions with only a single actuator is also presented. Then some of the issues concerning the prototyping and control of the robot mechanism are discussed.
References
Aracil, R., Saltare′ n, R. and Reinoso, O. (2003), “Parallel robots for autonomous climbing along tubular structures”, Robotics and Autonomous Systems, Vol. 42, pp. 125-34.
Gosselin, C.M., Sefrioui, J. and Richard, M.J. (1992a), “Polynominal solution to the direct kinematic problem of planar three degree of-freedom parallel manipulators”, Mechanism and Machines Theory, Vol. 27, pp. 107-19.
Gosselin, C.M. et al. (1992b), “On the direct kinematics of general spherical 3-degree-of-freedom parallel manipulators”, ASME Biennial Mechanisms Conference Proc., Scottsdale, AZ, pp. 7-11.
Hayes, M.J.D., Hysty, M.l. and Zsombor-Murray, P.J. (1999), “Solving the forward kinematics of a planar three-legged platform with holonomic higher pairs”, ASME J. Mech, Vol. 121, pp. 212-9.
Merlet, J-P. (2000), Parallel Robots, Kluwer, Dordrecht. Pierrot, F., Marquet, F., Company, O. and Gil, T. (2001),
“H4 parallel robot: modeling, design and preliminary experiments”, ICRA, pp. 3256-61.
Romdhane, L. (1999), “Design and analysis of a hybrid serial parallel manipulator”, Mechanism and Machine Theory, Vol. 34, pp. 1037-55.
Salataren, R., Aracil, R., Sabater, J.M., Reinoso, O. and Jimenez, L.M. (1999), “Modeling, simulation and conception of parallel climbing robots for construction and service”, paper presented at the 2nd International Conference on Climbing and Walking Robots, pp. 253-65.
To¨ nshoff, H.K. (1998), “A systematic comparison of parallel kinematics”, Keynote in Proceedings of the First Forum on Parallel Kinematic Machines, Milan, Italy, 31 August-1 September.
Tsai, L.W. (1996), “Kinematics of a three-dof platform with three extensible limbs”, Recent Advances in Robot Kinematics, Kluwer, Dordrecht, pp. 401-10.
Vossoughi, G.R., Bagheri, S., Tavakoli, M., Zakerzadeh, M.R. and Houseinzadeh, M. (2004), “Design, modeling and kinematics analysis of a novel serial/parallel pole climbing and manipulating robot”, paper presented at the 7th Biennial ASME Engineering Systems Design and Analysis conference, Manchester, 19-22 July.
Zakerzadeh, M.R., Vosoughi, G.R., Bagheri, S., Tavakoli, M. and Salarieh, H. (2004), “Kinematics analysis of a new 4- DOF hybrid (Serial-Parallel) manipulator for pole climbing robot”, paper presented at the 12th Mediterranean Conference on Control and Automation.
收藏