汽車電動助力轉向系統(tǒng)(EPS)設計【齒輪齒條轉向器】
汽車電動助力轉向系統(tǒng)(EPS)設計【齒輪齒條轉向器】,齒輪齒條轉向器,汽車電動助力轉向系統(tǒng)(EPS)設計【齒輪齒條轉向器】,汽車,電動,助力,轉向,系統(tǒng),eps,設計,齒輪,齒條,轉向器
46
長春理工大學光電信息學院畢業(yè)設計
摘要
汽車轉向系統(tǒng)可按轉向的能源不同分為機械轉向系統(tǒng)和動力轉向系統(tǒng)兩類。
汽車電動助力轉向系統(tǒng)是一種新型的汽車動力轉向系統(tǒng),與傳統(tǒng)液壓轉向系統(tǒng)相比,采用電動機直接提供助力,具有多方面優(yōu)越性。近年來已有很多中高檔汽車配備了動力轉向系統(tǒng)裝置,EPS研究也成為汽車工業(yè)的熱門課題之一,具有重要研究價值和巨大潛在應用前景。
在本文中重點進行齒輪齒條轉向器的設計計算和對轉向齒輪軸的校核,及轉向傳動機構的優(yōu)化設計。主要方法和理論采用汽車設計的經驗參數和大學所學機械設計的課程內容進行設計,并做了歸納和總結。
關鍵詞 轉向系統(tǒng);電動助力轉向系統(tǒng);齒輪齒條轉向器;優(yōu)化設計
-1-
Abstract
The steering system can be divided into mechanical energy and power steering system.
Electric power steering system is a new type of vehicle power steering system, compared with traditional hydraulic steering systems, directly with the motor power, has many advantages. In recent years, many in the luxury car have been equipped with a power steering system device, EPS studies have become a hot topic in automotive industry, great research value and great potential applications.
This article focus on the design of the rack and pinion steering gear shaft calculation and verification, and optimization of steering linkage. The main methods and theories of experience with automotive design parameters and the university curriculum in mechanical design to design, and made and summarized.
Key words Steering System;Electric Power Steering ;
Rack and pinion steering;Optimization
-2-
目 錄
摘要 I
Abstract II
第1章 緒論 1
1.1 汽車轉向系統(tǒng)簡介 1
1.1.1 轉向系的設計要求 1
1.2 EPS的特點及發(fā)展現狀 2
1.2.1 EPS與其他系統(tǒng)比較 2
1.2.2 EPS的特點 2
1.2.3 EPS在國內外的應用狀況 3
1.3 本課題的研究意義 4
第2章 電動助力轉向系統(tǒng)的總體組成 5
2.1 電動助力轉向系統(tǒng)的機理及類型 5
2.1.1 電動助力轉向系統(tǒng)的機理 5
2.1.2 電動助力轉向系統(tǒng)的類型 7
2.2 電動助力轉向系統(tǒng)的關鍵部件 9
2.2.1 扭矩傳感器 9
2.2.2 車速傳感器 9
2.2.3 電動機 9
2.2.4 減速機構 10
2.2.5 電子控制單元 10
2.3 電動助力轉向的助力特性 11
第3章 電動助力轉向系統(tǒng)的設計 12
3.1 對動力轉向機構的要求 12
3.2 齒輪齒條轉向器的設計與計算 12
3.2.1 轉向系計算載荷的確定 13
3.2.2 齒輪齒條式轉向器的設計 14
3.2.3 齒輪齒條轉向器轉向橫拉桿的運動分析 22
3.2.4 齒輪齒條傳動受力分析 24
3.2.5 齒輪軸的強度校核 24
第4章 轉向傳動機構的優(yōu)化設計 29
4.1 結構與布置 29
4.2 用解析法求內、外輪轉角關系 30
4.3 轉向傳動機構的優(yōu)化設計 32
4.3.1 目標函數的建立 32
4.3.2 設計變量與約束條件 33
4.4 研究結論 36
結論 37
致謝 39
參考文獻 40
第一章 緒論
1.1 汽車轉向系統(tǒng)簡介
汽車轉向系是用來保持或者改變汽車行駛方向的機構,在汽車轉向行駛時,保證各轉向輪之間有協(xié)調的轉角關系。它由轉向操縱機構、轉向器和轉向傳動機構組成。
轉向系統(tǒng)作為汽車的一個重要組成部分,其性能的好壞將直接影響到汽車的轉向特性、穩(wěn)定性、和行駛安全性。目前汽車轉向技術主要有七大類:手動轉向技術(MS)、液壓助力轉向技術(HPS)、電控液壓助力轉向技術(ECHPS)、電動助力轉向技術(EPS)、四輪轉向技術(4WS)、主動前輪轉向技術(AFS)和線控轉向技術(SBW)。轉向系統(tǒng)市場上以HPS、ECHPS、EPS應用為主。電動助力轉向具有節(jié)約燃料、有利于環(huán)境、可變力轉向、易實現產品模塊化等優(yōu)點,是一項緊扣當今汽車發(fā)展主題的新技術,他是目前國內轉向技術的研究熱點。
1.1.1 轉向系的設計要求
(1) 汽車轉彎行駛時,全部車輪應繞瞬時轉向中心旋轉,任何車輪不應有側滑。不滿足這項要求會加速輪胎磨損,并降低汽車的行駛穩(wěn)定性。
(2) 汽車轉型行駛后,在駕駛員松開轉向盤的條件下,轉向輪能自動返回到直線行駛位置,并穩(wěn)定行駛。
(3) 汽車在任何行駛狀態(tài)下,轉向輪都不得產生共振,轉向盤沒有擺動。
(4) 轉向傳動機構和懸架導向裝置共同工作時,由于運動不協(xié)調使車輪產生的擺動應最小。
(5) 保證汽車有較高的機動性,具有迅速和小轉彎行駛能力。
(6) 操縱輕便。
(7) 轉向輪碰撞到障礙物以后,傳給轉向盤的反沖力要盡可能小。
(8) 轉向器和轉向傳動機構的球頭處,有消除因磨損而產生間隙的調整機構。
(9) 在車禍中,當轉向軸和轉向盤由于車架或車身變形而共同后移時,轉向系應有能使駕駛員免遭或減輕傷害的防傷裝置。
(10) 進行運動校核,保證轉向輪與轉向盤轉動方向一致。
1.2 EPS的特點及發(fā)展現狀
1.2.1 EPS與其他系統(tǒng)比較
對于電動助力轉向機構(EPS),電動機僅在汽車轉向時才工作并消耗蓄電池能量;而對于常流式液壓動力轉向機構,因液壓泵處于長期工作狀態(tài)和內泄漏等原因要消耗較多的能量。兩者比較,電動助力轉向的燃料消耗率僅為液壓動力轉向的16%~20%。
液壓動力轉向機構的工作介質是油,任何部位出現漏油,油壓將建立不起來,不僅失去助力效能,并對環(huán)境造成污染。當發(fā)動機出現故障停止工作時,液壓泵也不工作,結果也會喪失助力效能,這就降低了工作可靠性。電動助力轉向機構不存在漏油的問題,只要蓄電池內有電提供給電動助力轉向機構,就能有助力作用,所以工作可靠。若液壓動力轉向機構的油路進入空氣或者貯油罐油面過低,工作時將產生較大噪聲,在排除氣體之前會影響助力效果;而電動助力轉向僅在電動機工作時有輕微的噪聲。
電動助力轉向與液壓動力轉向比較,轉動轉向盤時僅需克服轉向器的摩擦阻力,不存在回位彈簧阻力和反映路感的油壓阻力。電動助力轉向還有整體結構緊湊、部件少、占用的空間尺寸小、質量比液壓動力轉向約輕20%~25%以及汽車上容易布置等優(yōu)點。
1.2.2 EPS的特點
(1)EPS節(jié)能環(huán)保。
由于發(fā)動機運轉時,液壓泵始終處于工作狀態(tài),液壓轉向系統(tǒng)使整個發(fā)動機燃油消耗量增加了3%~5%,而EPS以蓄電池為能源,以電機為動力元件,可獨立于發(fā)動機工作,EPS幾乎不直接消耗發(fā)動機燃油。EPS不存在液壓動力轉向系統(tǒng)的燃油泄漏問題,EPS通過電子控制,對環(huán)境幾乎沒有污染。
(2)EPS裝配方便。
EPS的主要部件可以集成在一起,易于布置,與液壓動力轉向相比減少了許多原件,沒有液壓系統(tǒng)所需要的油泵、油管、壓力流量控制閥、儲油罐等,原件數目少,裝配方便,節(jié)約時間。
(3)EPS效率高。
液壓動力轉向系統(tǒng)效率一般在60%~70%,而EPS得效率較高,可高達90%以上。
(4)EPS路感好。
傳統(tǒng)純液壓動力轉向系大多采用固定放大倍數,工作驅動力大,但卻不能實現汽車在各種車速下駕駛時的輕便性和路感。而EPS系統(tǒng)的滯后性可以通過EPS控制器的軟件加以補償,是汽車在各種速度下都能得到滿意的轉向助力。
(5)EPS回正性好。
EPS系統(tǒng)結構簡單,不僅操作簡便,還可以通過調整EPS控制器的軟件,得到最佳的回正性,從而改善汽車的操縱穩(wěn)定性和舒適性。
(6)動力性。
EPS系統(tǒng)可隨車速的高低主動分配轉向力,不直接消耗發(fā)動機功率,只在轉向時才起助力作用,保障發(fā)動機充足動力。(不像HPS液壓系統(tǒng),即使在不轉向時,油泵也一直運轉處于工作狀態(tài),降低了使用壽命)
1.2.3 EPS在國內外的應用狀況
國外EPS的發(fā)展之路:
因為微型轎車上狹小的發(fā)動機艙空間給液壓助力轉向系統(tǒng)的安裝帶來了很大的麻煩,而EPS原件比較少,重量輕,裝配方便,比較適合在微型轎車上安裝。因此在國外,EPS系統(tǒng)首先是在微型轎車上發(fā)展起來的。
上世紀80年代初期,日本鈴木公司首次在其Cervo轎車上安裝了EPS系統(tǒng),隨后還應用在其Alto車上。此后,EPS在日本得到迅速發(fā)展。出于節(jié)能環(huán)保的考慮,歐、美等國的汽車公司也相繼對EPS進行了開發(fā)和研究。雖然比日本晚了十年時間,但是歐美國家的開發(fā)力度比較大,所選擇的產品類型也有所不同。日本起初選擇了技術相對成熟的有刷電機。
有刷電機比較成熟,在汽車上的應用較廣,比如雨刷、車窗等部分,稍作改進就適應了EPS的要求,因此研發(fā)周期較短,上世紀80年代末期就開始產業(yè)化,主要裝配在微型車上。而歐美則選擇了難度較大的無刷電機,但是電子控制系統(tǒng)比較復雜,延長了研發(fā)周期。直到90年代中期歐美才開始量產。從長遠發(fā)展看,有刷電機存在一定弊端,比如電機產生的噪聲較難克服,磨損較嚴重,存在電磁干擾等問題。因此,日本現在國內裝配的EPS也逐漸轉向無刷電機了。
國內EPS的發(fā)展現狀:
我國汽車電子行業(yè)的總體發(fā)展相對滯后,但是,隨著汽車對環(huán)保、節(jié)能和安全性要求的進一步提高,代表著現代汽車轉向系統(tǒng)的發(fā)展方向的EPS電動助力轉向系統(tǒng)已被我國列為高新科技產業(yè)項目之一,國內各大院校、科研機構和企業(yè)在進行EPS技術的研究,也有少數供應商能批量提供轉向軸式的EPS系統(tǒng)。但總的來講目前國內EPS技術還不成熟;供應商所提供的EPS系統(tǒng)還未達到產品級的要求,且類型單一,還不能滿足整車廠需要。據悉,自主品牌研發(fā)的EPS系統(tǒng)離產業(yè)化就差整車廠批量裝車認可這一臺階了,相信很快就可以實現量產。EPS系統(tǒng)是未來動力轉向系統(tǒng)的一個發(fā)展趨勢。
1.3 本課題的研究意義
隨著科技的發(fā)展和人們生活水平及環(huán)保意識的提高,汽車轉向助力肯定會向更輕便、更節(jié)能、更安全的方向發(fā)展,而本課題正是沿著這個方向對汽車的轉向系統(tǒng)進行了研究?,F存的汽車,大部分都是傳統(tǒng)液壓助力轉向系統(tǒng),甚至沒有助力轉向系統(tǒng),電動助力轉向系統(tǒng)能提供比其更安全、更舒適的轉向操控性和節(jié)能效果。本課題對該系統(tǒng)的進行了深入的研究,并將其應用于實踐,這對于推動該系統(tǒng)的發(fā)展和最終的產品化應用,對于推動機械、傳感器技術和電子器件制造等相關產業(yè)的發(fā)展,對于提高我國汽車電子化水平和加快轉向系統(tǒng)產業(yè)化發(fā)展具有十分重要的意義。
在可預見的將來,電動助力轉向系統(tǒng)在汽車領域必定會有廣泛的應用。
本章小結
這一章介紹了現在應用的汽車轉向技術,并對電動助力轉向系統(tǒng)和液壓助力轉向系統(tǒng)進行了分析比較。還闡述了EPS的國內外發(fā)展狀況。
第2章 電動助力轉向系統(tǒng)的總體組成
2.1 電動助力轉向系統(tǒng)的機理及類型
近年來,電動助力轉向機構在乘用車上得到應用,并有良好的發(fā)展前景。電動助力轉向機構,除去應當滿足對液壓式動力轉向機構機構的一些相似要求以外,同時還應當滿足:具有故障自診斷和報警功能;有良好的抗振動和抗干擾能力等;當地面與車輪之間有反向沖擊力作用時,電動助力轉向機構應迅速反應,制止轉向盤轉動;在過載使用條件下有過載保護功能等。
2.1.1 電動助力轉向系統(tǒng)的機理
電動助力轉向機構由機械轉向器與電動助力部分相結合構成。電動助力部分包括電動機、電池、傳感器和控制器(ECU)及線束,有的還有減速機構和電磁離合器等(圖2-1)
圖2-1 電動助力轉向機構示意圖
目前用于乘用車的電動助力轉向機構的轉向器,均采用齒輪齒條式轉向器。其功能除用來傳遞來自轉向盤的力矩與運動以外,還有增扭、降速作用。轉向過程中,電動機將來自蓄電池的電能轉變?yōu)闄C械能向轉向系輸出而構成轉向助力矩,并完成助力作用。與電動機連接的減速機構有蝸輪蝸桿、滾珠螺桿螺母或行星齒輪機構等,其作用也是降速、增扭。裝在減速機構附近的離合器(通常為電磁離合器)是為了保證電動助力轉向機構只在預先設定的行駛速度范圍內工作。在車速達到某一設定值時,離合器分離,并暫時停止電動機的助力作用。與此同時,轉向機構也暫時轉為機械式轉向機構。當電動機發(fā)生故障時,離合器也自動分離。離合器分離后再行轉向時,可不必因帶動電動機而消耗駕駛員體力。單片式電磁離合器包括主動輪、從動軸、壓盤、磁化線圈和滑環(huán)等。
1.主動輪 2.磁化線圈 3.壓盤 4.花鍵
5.從動軸 6軸承 7滑環(huán) 8電動機
圖2-2 電磁離合器工作原理簡圖
其工作原理如圖所示,裝有磁化線圈2的主動輪1與電動機軸固定連接,來自控制器的控制電流經滑環(huán)7輸入磁化線圈,于是主動輪產生電磁吸力,將壓盤3吸到主動輪上,然后電動機的動力經主動輪、壓盤及壓盤轂上的花鍵傳給從動軸5,實現助力作用。
汽車以較高車速轉向行駛,作用在轉向盤上的力矩將減小,以至于達到無需助力的程度,此時可設定:達到此車速時,電磁離合器停止工作。還有,在電動機停止工作以后,電磁離合器在控制器的控制下也要分離或者自動分離。此后,在進行再進行轉向將不存在助力作用,直至電動機恢復工作為止。
電動助力轉向機構的工作原理如下:
當駕駛員對轉向盤施力并轉動轉向盤時,位于轉向盤下方與轉向軸連接的轉矩傳感器將經扭桿彈簧連接在一起的上、下轉向軸的相對轉動角位移信號轉變?yōu)殡娦盘杺髦量刂破?,在同一時刻車速信號也傳至控制器。根據以上兩信號,控制器確定電動機的旋轉方向和助力轉矩的大小。之后,控制器將輸出的數字量經D/A轉換器,轉換為模擬量,并將其輸入電流控制電路。電流控制電路將來自微機的電流命令值同電動機電流的實際值進行比較后生成一個差值信號,同時將此信號送往電動機驅動電路,該電路驅動電動機,并向電動機提供控制電流,完成助力轉向作用。
2.1.2 電動助力轉向系統(tǒng)的類型
EPS系統(tǒng)依據電動機布置位置的不同可分為轉向軸助力式、小齒輪助力式、齒條助力式三個基本類型(圖2-3)
a) b) c)
a) 轉向軸助力式 b) 齒輪助力式 c) 齒條助力式
圖2-3 EPS系統(tǒng)的類型
(1) 轉向軸助力式 轉向軸助力式電動助力轉向機構的電動機布置在靠近轉向盤下方,并經蝸輪蝸桿機構與轉向軸連接(圖2-3a)。這種布置方案的特點是:
由于轉向軸助力式電動助力轉向的電動機布置在駕駛室內,所以有良好的工作條件;因電動機輸出的助力轉矩經過減速機構增大后傳給轉向軸,所以電動機輸出的助力轉矩相對小些,電動機尺寸也小,這又有利于在車上布置和減輕質量;電動機、轉矩傳感器、減速機構、電磁離合器等裝為一體是結構緊湊,上述部件又與轉向器分開,故拆裝與維修工作容易進行;轉向器仍然可以采用通用的典型結構齒輪齒條式轉向器;電動機距駕駛員和轉向盤近,電動機的工作噪聲和振動直接影響駕駛員;轉向軸等零件也要承受來自電動機輸出的助力轉矩的作用,為使其強度足夠,必須增大受載件的尺寸;盡管電動機的尺寸不大,但因這種布置方案的電動機靠近方向盤,為了不影響駕駛員腿部的動作,在布置時仍然有一定的困難。
(2)齒輪助力式 齒輪助力式電動助力轉向機構的電動機布置在與轉向器主動齒輪相連接的位置(圖2-3b),并通過驅動主動齒輪實現助力。這種布置方案的特點是:
電動機布置在地板下方、轉向器上部,工作條件比較差對密封要求較高;電動機的助力轉矩基于與轉向軸助力式相同的原因可以小些,因而電動機尺寸小,同時轉矩傳感器、減速機構等的結構緊湊、尺寸也小,這將有利于在整車上的布置和減小質量;轉向軸等位于轉向器主動齒輪以上的零部件,不承受電動機輸出的助力轉矩的作用,故尺寸可以小些;電動機距駕駛員遠些,它的動作噪聲對駕駛員影響不大,但震動仍然會傳到轉向盤;電動機、轉矩傳感器、電磁離合器、減速機構等與轉向器主動齒輪裝在一個總成內,拆裝時會因相互影響而出現一定的困難;轉向器與典型的轉向器不能通用,需要單獨設計、制造。
(3)齒條助力式 齒條助力式電動助力轉向機構的電動機與減速機構等布置在齒條處(圖2-3c),并直接驅動齒條實現助力。這種布置方案的特點是:
電動機位于地板下方,相比之下,工作噪聲和振動對駕駛員的影響都小些;電動機減速機構等不占據轉向盤至地板這段空間,因而有利于轉向軸的布置,駕駛員腿部的動作不會受到它們的干擾;轉向軸直至轉向器主動齒輪均不承受來自電動機的助力轉矩作用,故他們的尺寸能小些;電動機、減速機構等工作在地板下方,條件較差,對密封要求良好;電動機輸出的助力轉矩只經過減速機構增扭,沒有經過轉向器增扭,因而必須增大電動機輸出的助力轉矩才能有良好的助力效果,隨之而來的是電動機尺寸增大、質量增加;轉向器結構與典型的相差很多,必須單獨設計制造;采用滾珠螺桿螺母減速機構時,會增加制造難度與成本;電動機、轉向器占用的空間雖然大一些,但用于前軸負荷大,前部空間相對寬松一些的乘用車上不是十分突出的問題。
2.2 電動助力轉向系統(tǒng)的關鍵部件
EPS主要由扭矩傳感器、車速傳感器、電動機、減速機構和電子控制單元ECU組成。
2.2.1 扭矩傳感器
扭矩傳感器檢測扭轉桿扭轉變形,并將其轉變?yōu)殡娮有盘柌⑤敵鲋岭娮涌刂茊卧请妱又D向系統(tǒng)的關鍵部件之一。扭距傳感器由分相器單元1、分相器單元2及扭桿組成(如圖2-4)。
圖2-4 扭距傳感器
轉子部分的分相器單元1固定于轉向主軸,轉子部分的分相器單元2固定于轉向傳動軸。扭轉桿扭轉后,使兩個分相器單元產生一個相對角度,電子控制單元根據兩個分相器的相對位置決定對EPS電動機提供多少電壓。
2.2.2 車速傳感器
車速傳感器的功能是測量汽車的行駛速度。目前,轎車EPS控制器一般都從整車CAN總線中提取車速信號。
2.2.3 電動機
電動機由轉角傳感器、定子及轉子組成(如圖2-5)。
將電動機和減速機構布置在齒條處,并直接驅動齒條實現助力。通過轉角傳感器檢測電動機的旋轉角度防止扭矩波動。
圖2-5 電動機結構
2.2.4 減速機構
減速機構采用滾珠式減速齒輪機構,將其固定在電動機的轉子上。電動機的轉動傳到減速機構,經過滾珠及蝸桿傳到齒條軸上。滾珠在機構內部經過導向進行循環(huán)。
2.2.5 電子控制單元
電子控制單元(ECU)的功能是依據扭矩傳感器和車速傳感器的信號,進行分析和計算后,發(fā)出指令,控制電動機的動作。此外,ECU還有安全保護和自我診斷的功能,ECU通過采集電動機的電流、發(fā)動機轉速等信號判斷系統(tǒng)工作是否正常,一旦系統(tǒng)工作異常,電動助力被切斷;同時ECU將進行故障診斷分析,故障指示燈亮,并以故障所對應的模式閃爍。
2.3 電動助力轉向的助力特性
電動助力轉向的助力特性由軟件設定。通常將助力特性曲線設計成隨著汽車行駛速度Va的變化而變化,并將這種助力特性稱之為車速感應型。圖2-6示出的車速感應型助力特性曲線表明,助力既是作用到轉向盤上的力矩的函數,同時也是車速的函數。
圖2-6 車速感應型助力特性
當車速Va=0時,相當于汽車在原地轉向,助力特性曲線的位置居其他各條曲線之上,助力強度達到最大。隨著車速Va不斷升高,助力特性曲線的位置也逐漸降低,直至車速Va達到最高車速Vamax為止,此時的助力強度已為最小,而路感強度達到最大。
本章小結
本章主要是介紹了電動助力轉向機構的組成、工作原理,以及對電動助力轉向的三種布置形式進行了分析對比。還有分析了電動助力轉向系統(tǒng)各主要部件的結構及工作過程和助力特性。第3章 電動助力轉向系統(tǒng)的設計
3.1 對動力轉向機構的要求
(1)運動學上應保持轉向輪轉角和駕駛員轉動轉向盤的轉角之間保持一定的比例關系。
(2)隨著轉向輪阻力的增大(或減?。饔迷谵D向盤上的手力必須增大(或減?。Q之為“路感”。
(3)當作用在轉向盤上的切向力時(因汽車形式不同而異),動力轉向器就開始工作。
(4)轉向后,轉向盤應自動回正,并使汽車保持在穩(wěn)定的直線行駛狀態(tài)。
(5)工作靈敏。
(6)動力轉向失靈時,仍能用機械系統(tǒng)操縱車輪轉向。
3.2 齒輪齒條轉向器的設計與計算
齒輪齒條轉向器最主要的優(yōu)點是:結構簡單、價格低廉、質量輕、剛性好、使用可靠;傳動效率高達90%;根據輸入齒輪位置和輸出特點不同,齒輪齒條式轉向器有四種形式:中間輸入,兩端輸出(圖3-1a);側面輸入,兩端輸出(圖3-1b);側面輸入,中間輸出(圖3-1c);側面輸入,一端輸出圖(圖3-1d)。
圖3-1 齒輪齒條式轉向器的四種形式
3.2.1 轉向系計算載荷的確定
為了保證行駛安全,組成轉向系的各零件應有足夠的強度。欲驗算轉向系零件的強度,需首先確定作用在各零件上的力。影響這些力的主要因素有轉向軸的負荷、路面阻力和輪胎氣壓等。為轉動轉向輪要克服的阻力,包括轉向輪繞主銷轉動的阻力、車輪穩(wěn)定阻力、輪胎變形阻力和轉向系中的內摩擦阻力等。
精確地計算出這些力是困難的。為此用足夠精確的半經驗公式來計算汽車在瀝青或者混凝土路面上的原地轉向阻力矩MR(N·mm)。
N·mm (3-1)
式中 f——輪胎和路面間的滑動摩擦因數;
——轉向軸負荷,單位為N;
P——輪胎氣壓,單位為MPa。
作用在轉向盤上的手力Fh為:
N (3-2)
式中 ——轉向搖臂長, 單位為mm;
——原地轉向阻力矩, 單位為N·mm
——轉向節(jié)臂長, 單位為mm;
——為轉向盤直徑,單位為mm;
——轉向器角傳動比;
——轉向器正效率。
因齒輪齒條式轉向傳動機構無轉向搖臂,故L1、L2不代入數值。對給定的汽車,用上式計算出來的作用力是最大值。因此,可以用此值作為計算載荷。
梯形臂長度的計算:
輪輞直徑= 16in=16×25.4=406.4mm
梯形臂長度=×0.8/2= 406.4×0.8/2=162.6mm (3-3)
取=160mm
輪胎直徑的計算RT:
=406.4+0.55×225=530.2mm (3-4)
取=530mm
轉向橫拉桿直徑的確定:
(3-5)
=;
因此取=15mm
初步估算主動齒輪軸的直徑:
(3-6)
=140MPa
所以取=18mm
上述的計算只是初步對所研究的轉向系載荷的確定。
3.2.2 齒輪齒條式轉向器的設計
(一) EPS系統(tǒng)齒輪齒條轉向器的主要元件
(1)齒條是在金屬殼體內來回滑動的,加工有齒形的金屬條。轉向器殼體是安裝在前橫梁或前圍板的固定位置上的。齒條代替梯形轉向桿系的搖桿和轉向搖臂,并保證轉向橫拉桿在適當的高度以使他們與懸架下擺臂平行。齒條可以比作是梯形轉向桿系的轉向直拉桿。導向座將齒條支持在轉向器殼體上。齒條的橫向運動拉動或推動轉向橫拉桿,使前輪轉向。
表3-1 齒條的尺寸設計參數
序號
項目
符號
尺寸參數()
1
總長
730
2
直徑
25
3
齒數
20
4
法向模數
3
(2)齒輪是一只切有齒形的軸。它安裝在轉向器殼體上并使其齒與齒條上的齒相嚙合。齒輪齒條上的齒可以是直齒也可以是斜齒。齒輪軸上端與轉向柱內的轉向軸相連。因此,轉向盤的旋轉使齒條橫向移動以操縱前輪。齒輪軸由安裝在轉向器殼體上的球軸承支承。
斜齒的彎曲增加了一對嚙合齒輪參與嚙合的齒數。相對直齒而言,斜齒的運轉趨于平穩(wěn),并能傳遞更大的動力。
表3-2 齒輪軸的尺寸設計參數
序號
項目
符號
尺寸參數(mm)
1
總長
198
2
齒寬
60
3
齒數
6
4
法向模數
3
5
螺旋角
14°
6
螺旋方向
左旋
(3)轉向橫拉桿及其端部
1.橫拉桿 2.鎖緊螺母3.外接頭殼體4.球頭銷5.六角開槽螺母
6.球碗7.端蓋 8.梯形臂 9.開口銷
圖3-2轉向橫拉桿外接頭
轉向橫拉桿與梯形轉向桿系的相似。球頭銷通過螺紋與齒條連接。當這些球頭銷依制造廠的規(guī)范擰緊時,在球頭銷上就作用了一個預載荷。防塵套夾在轉向器兩側的殼體和轉向橫拉桿上,這些防塵套阻止雜物進入球銷及齒條中。
轉向橫拉桿端部與外端用螺紋聯接。這些端部與梯形轉向桿系的相似。側面螺母將橫拉桿外端與橫拉桿鎖緊(見圖3-2)。
注:轉向反饋是由前輪遇到不平路面而引起的轉向盤的運動。
(4)齒條調整 一個齒條導向座安裝在齒條光滑的一面。齒條導向座1和與殼體螺紋連接的調節(jié)螺塞3之間連有一個彈簧2。此調節(jié)螺塞由鎖緊螺母固定4。齒條導向座的調節(jié)使齒輪、齒條間有一定預緊力,此預緊力會影響轉向沖擊、噪聲及反饋(見圖3-3)。
圖3-3齒條間隙調整裝置
齒條斷面形狀有圓形、V形和Y形三種,本設計采用V形斷面,V形和Y形斷面齒條與圓形斷面比較,消耗的材料少,約節(jié)省20%,故質量?。晃挥邶X下面的兩斜面與齒條托座接觸,可用來防止齒條繞軸線轉動。在齒條與托座之間裝有用減磨材料(聚四氟乙烯)做的墊片,以減少滑動摩擦。當車輪跳動、轉向或轉向器工作時,如在齒條上作用有能使齒條旋轉的力矩時,V形斷面齒條能防止因齒條旋轉而破壞齒輪、齒條的齒不能正確嚙合的情況出現。
(二) 轉向傳動比 當轉向盤從鎖點向鎖點轉動,每只前輪大約從其正前方開始轉動30°,因而前輪從左到右總共轉動大約60°。若傳動比是1:1,轉向盤旋轉1°,前輪將轉向1°,轉向盤向任一方向轉動30°將使其前輪從鎖點轉向鎖點。這種傳動比過于小,因而轉向盤最輕微的運動將會使車輛突然改變方向。轉向角傳動比必須使前輪轉動同樣角度時需要更大的轉向盤轉角。對乘用車,推薦轉向器角傳動比在17~25范圍內選??;對商用車,在23~32范圍內選取,這里選傳動比為18:1。即在這樣的傳動比下,轉向盤每轉動18°,前輪轉向1°。
(三) EPS系統(tǒng)齒輪齒條轉向器的安裝 齒輪齒條式轉向器可安在前橫梁上或發(fā)動機后部的前圍板上(見圖3-4)。橡膠隔振套包在轉向器外,并固定在橫梁上或前圍板上。齒輪齒條轉向器的正確安裝高度,使轉向橫拉桿和懸架下擺臂可平行安置。齒輪齒條式轉向系統(tǒng)中磨擦點的數目減少了,因此這種系統(tǒng)輕便緊湊。大多數承載式車身的前輪驅動汽車用齒輪齒條式轉向機構。由于齒條直接連著梯形臂,這種轉向機構可提供好的路感。
在轉向器與支承托架之間裝有大的橡膠隔振墊,這些襯墊有助于減少路面的噪聲、振動從轉向器傳到底盤和客艙。齒輪齒條轉向器裝在前橫梁上或前圍板上。轉向器的正確安裝對保證轉向橫拉桿與懸架下擺臂的平行關系有重要作用。為保持轉向器處在正確的位置,在轉向器安裝的位置處,前圍板有所加固。
圖3-4 轉向器的安裝位置
(四) 齒輪齒條式轉向器的設計要求 齒輪齒條式轉向器的齒輪多數采用斜齒圓柱齒輪。齒輪模數取值范圍多在2~3mm之間。主動小齒輪齒數多數在5~7個齒范圍變化,壓力角取20°,齒輪螺旋角取值范圍多為9°~15°。齒條齒數應根據轉向輪達到最大偏轉角時,相應的齒條移動行程應達到的值來確定。變速比的齒條壓力角,對現有結構在12°~35°范圍內變化。此外,設計時應驗算齒輪的抗彎強度和接觸強度。
主動小齒輪選用16MnCr5或15CrNi6材料制造,而齒條常采用45鋼制造。為減輕質量,殼體用鋁合金壓鑄。
(五) 齒輪軸和齒條的設計計算
1.選擇齒輪材料、熱處理方式及計算許用應力
(1) 選擇材料及熱處理方式
小齒輪16MnCr5 滲碳淬火,齒面硬度56-62HRC
大齒輪 45鋼 表面淬火,齒面硬度52-56HRC
(2) 確定許用應力
a)確定和
b)計算應力循環(huán)次數N,確定壽命系數、。
(3-7)
式中 ——齒輪轉速(r/min);
——齒輪轉一周,同一側齒面嚙合的次數;
——齒輪的工作壽命(h);
c)計算許用應力
取,
(3-8)
(3-9)
應力修正系數
(3-10)
(3-11)
2.初步確定齒輪的基本參數和主要尺寸
(1) 選擇齒輪類型
根據齒輪傳動的工作條件,選用斜齒圓柱齒輪與斜齒齒條嚙合傳動方案
(2) 選擇齒輪傳動精度等級
選用7級精度
(3) 初選參數
初選
按當量齒數
(4) 初步計算齒輪模數
轉矩 (3-12)
閉式硬齒面?zhèn)鲃樱待X根彎曲疲勞強度設計。
(3-13)
=2.309
(5) 確定載荷系數
,由,
0.000696,;對稱布置,??;
取
則
(6) 修正法向模數
(3-14)
圓整為標準值,取
3.確定齒輪傳動主要參數和幾何尺寸
(1) 分度圓直徑
(3-15)
(2) 齒頂圓直徑
=16+2×2.5(1+0)=21 (3-16)
(3) 齒根圓直徑
=16-2×2.5×1.25=9.75 (3-17)
(4) 齒寬b
(3-18)
因為相互嚙合齒輪的基圓齒距必須相等,即。
齒輪法面基圓齒距為
齒條法面基圓齒距為
取齒條法向模數為
(5) 齒條齒頂高
(3-19)
(6) 齒條齒根高
(3-20)
(7) 法面齒距
(3-21)
4.校核齒面接觸疲勞強度
查表,得
查圖,得
取,
所以
=1677.6
所以齒面接觸疲勞強度滿足要求。
3.2.3 齒輪齒條轉向器轉向橫拉桿的運動分析
當轉向盤從鎖點向鎖點轉動,每只前輪大約從其正前方開始轉動30°,因而前輪從左到右總共轉動約60°。當轉向輪右轉30°,即梯形臂或轉向節(jié)由繞圓心轉至時,齒條左端點移至的距離為
30°=160×cos30°=138.564
=160-138.564=21.436
30°=80
==339.3
=339.3-80=259.32
=340-259.32=80.7
圖3.4 轉向橫拉桿的運動分析簡圖
同理計算轉向輪左轉30°,轉向節(jié)由繞圓心轉至時,齒條左端點E移至的距離為
=80
=339.3
=80+339.3-340=79.3
齒輪齒條嚙合長度應大于
即 =80.7+79.3=160
取L=200
3.2.4 齒輪齒條傳動受力分析
若略去齒面間的摩擦力,則作用于節(jié)點P的法向力Fn可分解為徑向力Fr和分力F,分力F又可分解為圓周力Ft和軸向力Fa。
=2×35000/16=4375
=1641.12
=1090.8
3.2.5 齒輪軸的強度校核
1.軸的受力分析
(1) 畫軸的受力簡圖。
(2) 計算支承反力
在垂直面上
在水平面上
(3) 畫彎矩圖
在水平面上,a-a剖面左側、右側
在垂直面上,a-a剖面左側
a-a剖面右側
合成彎矩,a-a剖面左側
a-a剖面右側
(4) 畫轉矩圖
轉矩 =4375×16/2=46636.4
2.判斷危險剖面
顯然,a-a截面左側合成彎矩最大、扭矩為T,該截面左側可能是危險剖面。
3.軸的彎扭合成強度校核
由《機械設計》[4]查得,,
=60/100=0.6。
a-a截面左側
4.軸的疲勞強度安全系數校核
查得, ,;
。
a-a截面左側
查得;由表查得絕對尺寸系數
軸經磨削加工,查得質量系數β=1.0。則
彎曲應力
應力幅
平均應力
切應力
安全系數
查得許用安全系數[S]=1.3~1.5,顯然S>[S],故a-a剖面安全。
圖3.3-6 齒輪軸校核分析圖
本章小結
本章是電動助力轉向系統(tǒng)的設計,主要內容如下:
(1) 介紹了電動助力轉向系統(tǒng)的一種設計方法,這種設計方法是有其可行性的,能夠設計出符合助力要求的電動助力轉向系統(tǒng),該設計方法在現實中是比較合適的。
(2) 對電動助力轉向系統(tǒng)中的齒輪齒條轉向器的主要元件進行的詳細的介紹,并且給出了一些參考的轉向系參數。
(3) 根據已知條件,對電動助力轉向系統(tǒng)中的齒輪齒條式轉向器進行了齒輪軸和齒條的設計計算。
第4章 轉向傳動機構的優(yōu)化設計
4.1 結構與布置
齒輪齒條式轉向器因結構簡單緊湊、制造工藝簡便等優(yōu)點, 既適用于整體式前軸,也適用于采用獨立懸架的斷開式前軸, 被廣泛地應用在轎車、輕型客貨車、微型汽車等車輛上。其中, 與之配用的轉向傳動機構同傳統(tǒng)的整體式轉向梯形機構相比有其特殊之處。
一般來說, 這種轉向系統(tǒng)的結構大多如圖4-1所示。轉向軸1的末端與轉向器的齒輪軸2直接相連或通過萬向節(jié)軸相連, 齒輪2與裝于同一殼體的齒條3嚙合, 外殼則固定于車身或車架上。齒條通過兩端的球鉸接頭與兩根分開的橫拉桿4、7相連, 兩橫拉桿又通過球頭銷與左右車輪上的梯形臂5、6相連。因此, 齒條3既是轉向器的傳動件又是轉向梯形機構中三段式橫拉桿的一部分。
絕大多數齒輪齒條式轉向器都布置在軸前后方, 這樣既可避讓開發(fā)動機的下部, 又便于與轉向軸下端連接。安裝時, 齒條軸線應與汽車縱向對稱軸垂直, 而且當轉向器處于中立位置時, 齒條兩端球鉸中心應對稱地處于汽車縱向對稱軸的兩側。
1.轉向軸 2.齒輪 3.齒條 4.左橫拉桿
5.左梯形臂 6.右梯形臂 7.右橫拉桿
圖4-1轉向系統(tǒng)結構簡圖
對于給定的汽車, 其軸距L、主銷后傾角β以及左右兩主銷軸線延長線與地面交點之間的距離K均為已知定值。對于選定的轉向器, 其齒條兩端球鉸中心距也為已知定值。因而在設計轉向傳動機構時, 需要確定的參數為梯形底角γ、梯形臂長以及齒條軸線到梯形底邊的安裝距離h。而橫拉桿長則可由轉向傳動機構的上述參數以及已知的汽車參數K和轉向器參數M來確定。其關系式為:
(4-1)
4.2 用解析法求內、外輪轉角關系
轉動轉向盤時, 齒條便向左或向右移動,使左右兩邊的桿系產生不同的運動, 從而使左右車輪分別獲得一個轉角。以汽車左轉彎為例, 此時右輪為外輪, 外輪一側的桿系運動如圖4-2所示。設齒條向右移過某一行程S, 通過右橫拉桿推動右梯形臂, 使之轉過。
圖4-2外輪一側桿系運動情況
取梯形右底角頂點O為坐標原點, X、Y軸方向如圖5-2所示, 則可導出齒條行程S與外輪轉角的關系:
(4-2)
另外,由圖4-2可知:
∴ (4-3)
而內輪一側的運動則如圖4-3所示, 齒條右移了相同的行程S, 通過左橫拉桿拉動左梯形臂轉過。
圖4-3內輪一側桿系運動情況
取梯形左底角頂點O1為坐標原點,X 、Y軸方向如圖5-3所示, 則同樣可導出齒條行程S與內輪轉角的關系, 即:
(4-4)
(4-5)
因此, 利用公式(4-2)便可求出對應于任一外輪轉角的齒條行程S, 再將S代入公式(4-5)即可求出相應的內輪轉角。把公式(4-2)和(4-5)結合起來便可將表示為的函數,記作:
反之, 也可利用公式(4-4)求出對應于任一內輪轉角的齒條行程S, 再將S代入公式(4-3)即可求出相應的外輪轉角。將公式(4-4)和(4-5)結合起來可將表示為的函數, 記作:
4.3 轉向傳動機構的優(yōu)化設計
4.3.1 目標函數的建立
眾所周知, 在不計輪胎側偏時, 實現轉向輪純滾動、無側滑轉向的條件是內、外輪轉角具有如圖4-4所示的理想的關系, 即:
(4-6)
式中 T——計及主銷后傾角時的計算軸距
L——汽車軸距
r——車輪滾動半徑
由式(4-6)可將理想的內輪轉角表示為的函數, 即:
(4-7)
反之, 取內輪轉角為自變量時, 理想的外輪轉角也可表示為的函數, 即:
(4-8)
而由轉向梯形機構所提供的內、外實際轉角關系為前述的θi=F(θ0)或 θ0=Φ(θi),因此, 轉向梯形機構優(yōu)化設計的目標就是要在規(guī)定的轉角范圍內使實際的內或外輪轉角盡量地接近對應的理想的內或外輪轉角。為了綜合評價在全部轉角范圍內兩者接近的精確程度, 并考慮到在最常使用的中小轉角時希望兩者盡量接近, 因此建議用兩函數的加權均方根誤差作為評價指標。即:
(4-9)
(4-10)
兩式中的加權因子、為:
(4-9)、(4-10) 兩式是等價的, 可根據具體情況任取其中之一作為極小化目標函數。
圖4-4理想的內、外輪轉交關系
4.3.2 設計變量與約束條件
對于給定的汽車和選定的轉向器, 轉向梯形機構尚有梯形臂長、底角γ和安裝距離h三個設計變量。其中底角γ可按經驗公式先選一個初始值,然后再增加或減小, 進行優(yōu)化搜索。而及h的選擇則要結合約束條件來考慮。
第一, 要保證梯形臂不與車輪上的零部件(如輪胎、輪輛或制動底板)發(fā)生干涉, 故要滿足:
式中 Aoy——梯形臂球頭銷中心的Y坐標值(見圖4-3)
Aymin——車輪上可能與梯形臂干涉部位的Y坐標值
因,所以可知當選定時的可取值上限為: (4-11)
第二, 要保證有足夠的齒條行程來實現要求的最大轉角。即有:
式中 Smax——最大轉角或所對應的齒條行程
[S]——轉向器的許用齒條行程
因
所以由公式(1)或(3)可知:
一般來說{ }內的數值很小, 故在估算齒條行程時可略去不計, 即可粗略地認為:
所以當選定時,的可取值范圍為:
(4-12)
或 (4-13)
(4-12)式和(4-13)式是等價的,使用時可根據具體情況任取其中之一作為約束條件。
第三,要保證有足夠大的傳動角。傳動角是指轉向梯形臂與橫拉桿所夾的銳角。隨著車輪轉角增大, 傳動角漸漸變小。而且對應于同一齒條行程, 內輪一側的傳動角總是比外輪一側的傳動角要小。由圖4-2可知:
由圖4-3可知:
最小傳動角發(fā)生在內輪一側, 當達到最大值時, 也達到最大值, 故此時為最小值。傳動角過小會造成有效分力過小,表現為轉向沉重或回正不良。對于一般平面連桿機構, 為了保證機構傳動良好, 設計時通常應使°, 但一般后置式轉向梯形機構的都偏小。這是由于汽車正常行駛中多用小轉角轉向, 約有80%以上的轉角在20°以內即使是大轉角轉向, 也是從小轉角開始, 而且速度較低, 所以取23°時的內輪一側傳動角作為控制參數。以°作為約束條件, 這樣一般均能保證在°時°。
轉向器安裝距離h對傳動角的影響較大, h越小, 占也小, 可獲得較大的。在選擇h時應充分注意到這一點, 但h過小會造成橫拉桿與齒條間夾角ζ過大。由圖4-2、圖4-3可知:
為保證傳動良好一般希望°, 以此作為約束條件即要滿足聯立不等式:
由此可解得:
由于轉向器處于中立狀態(tài)時(即),值較小,故可近似地認為:
于是可得h的取值范圍:
<h≤
(4-14)
4.4 研究結論
研究得到,對于同一,隨著γ增大,σi略有減小,但要求安裝距離h相應地增大,同時ζmax也隨之加大。隨著的減小,也略有減小,不過小轉向力臂也小,操縱力會有所增大??偟目磥?,只要、γ和h三者選配的恰當,其差別是很小的。
本章小結
本章介紹了與齒輪齒條式轉向器配用的轉向傳動機構的優(yōu)化設計,介紹了該轉向機構的結構特點和優(yōu)化設計方法,給出了優(yōu)化設計的目標函數和設計變量的選取范圍。
結論
在道路上行駛的各種機動車輛中,轉向系統(tǒng)是它們必備的一個重要組成部分。汽車的轉向系就是用來改變或保持汽車行駛方向的機構,它由轉向操縱機構、轉向傳動裝置、轉向輪和專用機構組成。汽車的轉向性能是汽車的主要性能之一,它能直接影響到汽車的操縱穩(wěn)定性,對于確保車輛的安全行駛、減少交通事故以及保護駕駛員的人身安全、改善駕駛員的工作條件起著重要的作用。
隨著時間的推移,高科技的不斷發(fā)展,傳統(tǒng)的機械助力轉向系統(tǒng)慢慢地被電動助力轉向系統(tǒng)所取代。電動助力轉向系統(tǒng)采用全新的控制模式,最新的電子技術和高性能的電機控制技術,能夠根據車輛不同的行駛狀況調節(jié)助力,擁有更好的轉向操控性和節(jié)能效果。隨著車輛進入家庭步伐的加快以及對節(jié)能、駕駛舒適性要求的提高,電動助力轉向系統(tǒng)將擁有非常廣闊的應用前景。本文就是對汽車電動助力轉向系統(tǒng)做了初步的研究,主要以電動助力轉向系統(tǒng)為研究對象。
本文采用理論研究和借鑒研究相結合的方法,對電動助力轉向系統(tǒng)進行了初步的理論研究和設計。
本論文完成的主要內容如下:
(1) 汽車電動助力轉向系統(tǒng)的介紹。介紹了轉向系統(tǒng)的發(fā)展狀況,重點研究了電動助力轉向系統(tǒng)的發(fā)展前景及與其他轉向系統(tǒng)的比較,總結出EPS系統(tǒng)的優(yōu)點,在將來,電動助力轉向系統(tǒng)在汽車尤其是豪華轎車和貨車中必定會有廣泛的應用。
(2) 電動助力轉向系統(tǒng)的總體設計。對EPS系統(tǒng)的工作原理進行了研究,并對EPS系統(tǒng)的結構和組成元件進行了細致、深入的研究。
(3) EPS系統(tǒng)的設計方法和轉向器的設計。介紹了電動助力轉向系統(tǒng)的設計和計算方法。對齒輪齒條式轉向器進行了具體的設計和計算,根據任務要求完成了齒輪軸和齒條的部分計算。
(4) 電動助力轉向系統(tǒng)控制器的研究。簡單的介紹了電動助力轉向系統(tǒng)控制器組成和工作原理。
(5) 轉向傳動機構的優(yōu)化設計。與齒輪齒條式轉向器配用的轉向傳動機構的優(yōu)化設計。介紹了轉向傳動機構的優(yōu)化設計方法,研究了其可行性,給出了優(yōu)化設計的目標函數和設計變量的選擇范圍。
由于時間緊張和水平有限,對電動助力轉向系統(tǒng)的研究不是十分的完善,對于EPS系統(tǒng)的分析還有待更進一步的深入研究,比如對EPS系統(tǒng)的仿真分析、電機的控制原理和EPS系統(tǒng)模型的建立等內容。總之,這次的研究工作還只是對汽車的電動助力轉向系統(tǒng)的研究和設計開了個頭,還有更多的內容需要更進一步的學習。
致謝
經過二個多月努力,完成了我的畢業(yè)設計。由于時間和能力所限,本論文中一定存在許多疏漏和不足,懇請各位老師們給予批評指正,以求在今后的工作中做出進一步的改進與提高。
在畢業(yè)設計過程中,我始終得到我的導師吳翠紅老師的悉心指導和關心。老師嚴謹的治學態(tài)度、謙虛和藹的作風,給我留下了深刻的印象。對我以后的工作學習將有莫大的幫助。值此論文完成之際,謹向吳老師致以崇高的敬意和誠摯的感謝。
同時,在整個畢業(yè)設計期間,其他老師在很多方面也給予了我?guī)椭?、指點和支持,他們的工作態(tài)度是我學習的榜樣。在此也向他們表示衷心的感謝!
感謝09522班我的同學對我的幫助,畢業(yè)設計的完成離不開他們的幫助和支持。
特別感謝我的家人。是他們一直在身后默默地支持著我,讓我順利的走到今天。
最后,再次向所有幫助過我的老師、同學和朋友致謝!
參考文獻
[1]王望予.汽車設計[M].第四版.機械工業(yè)出版社,2010
[2]郭新華.汽車構造[M].第二版.高等教育出版社,2008
[3]王黎欽,陳鐵銘.機械設計 [M].第四版.哈爾濱工業(yè)大學出版社,2008
[4] 余志生,汽車理論. [M]第五版.機械工業(yè)出版社,2010
[5]王連明,宋寶玉.機械設計課程設計. [M]第四版.哈爾濱工業(yè)大學出版社,2010
[6]張昌華.電動助力轉向系統(tǒng)的研究與設計. [M]武漢理工大學,2004
[7]李書龍.汽車電動助力轉向系統(tǒng)的研究與開發(fā). [M]東南大學,2004
[8]張鎮(zhèn)鋒.汽車電動助力轉向器電控單元(ECU)的研究. 武漢理工大學,2007
[9]錢瑞明.汽車轉向傳動機構的類型分析與優(yōu)化設計. [M].東南大學,2005
[10] Kim H.J. Control logic for an Electric Power Steering System Using Assist Motor[J].Mechatrorucs,2002,12:447-459
[11]Anthony J C.Correlation of electric power steering vibration to subtective ratings[D].SAEPaper NO.2000-01-0176,2000
[12]Ronald K.Jurgen.Autoomtive Electronnics Handbook[M].2nd Edition,1999
-46-
收藏