樹枝粉碎成型機成型裝置設計
樹枝粉碎成型機成型裝置設計,樹枝粉碎成型機成型裝置設計,樹枝,粉碎,成型,裝置,設計
附錄1: 生物質燃料研究
第一章.介紹
生物質是排在煤和石油后面的世界第三大能源資源(Basipetal.1997年)。直到19世紀中葉,生物質能源占全球能源消耗的大部分。即使在過去的五十年中,化石燃料使用的增加促使生物質能源消耗的減少,生物量仍然相當于提供了約12.5億噸石油或約占世界人口的14%的能源消耗。
全球每年主要的能源消耗四分之一的全球主要的用于農(nóng)業(yè)實踐(WEC 1994)。 木質燃料、秸稈,青草等是最突出的生物質能源。如果使用得當,會帶來很多好處,
其中最重要的是他們是可再生能源和可持續(xù)能源原料。與化石燃料相比它可以顯著減少碳的凈排放。出于這個原因,可再生能源和可持續(xù)的能源燃料被認為是一個清潔發(fā)展機制(CDM),可以減少溫室氣體(GHG)排放(李和胡2003年)。
生物質資源的來源是木材或農(nóng)產(chǎn)品,但是他們的供應是有限的。為了解決這個問題,世界各國正考慮發(fā)展生物質農(nóng)作物和開發(fā)技術來使用生物質能利用更有效率。在美國(美國)和多數(shù)歐洲國家,生物能源已經(jīng)滲透到了能源市場。在美國和瑞典約占整個能源市場4%和13%。瑞典正在實施計劃逐步淘汰核電站,減少
化石燃料的能源使用,增加生物質能源的使用(Breeden 2006)。
生物質能源的一個主要局限是生物質能源目的密度太小,秸稈和草密度范圍通常是從80 - 100公斤/立方米,木質生物質是150 - 200公斤/立方米, 密度低的生物質常常使材料難儲存、運輸和使用。密度低也帶來了新的問題,比如燒結,因為密度差別造成燃料到鍋爐燃燒效率降低。為了克服這些限制致密化是一個很好選擇。通過機械壓縮從而實現(xiàn)生物量的在致密化,從而將增加了密度增加了十倍。商業(yè)的致密化的生物質采用顆粒壓縮,其他的比如擠出成型,塊狀壓縮,或輥壓,是為了解決喂養(yǎng),儲存,處理和運輸問題。
本文檔全面介紹了當前生物技術研究和發(fā)展,提供致密化參數(shù)的優(yōu)化。致密化過程和技術,同時介紹的影響過程和原料變量和生化成分的生物量在原料質量屬性,如持久性、散裝密度、顆粒密度、和熱量的價值。本文主要包括壓實和響應模型和一個討論的優(yōu)化過程。回顧國際固體燃料標準和一個介紹公司處理致密化設備和熱處理技術也包括。該介紹的具體內容包括:
技術:
——粒子粘結致密化的機制
——致密化技術,包括擠壓、壓塊、壓縮
能源的需求——壓縮成型機,和擠出機
生產(chǎn)過程副作用的影響,原料變量和生物量的組成
致密化過程
——重要的成型質量標準
預處理的效果如磨、預熱、蒸汽、和氨纖維擴張(AFEX)生物量質量
-壓縮模型
——程序響應曲面建模和優(yōu)化。
國際固體燃料標準。
設備供應商:
-致密化設備
——熱處理技術。
第二章.生物質致密化
未加工的生物質原料很難大規(guī)模應用,因為它體積龐大,濕度高,并且密度低。生物質致密化技術把植物轉換轉化為燃料。這些技術也稱為制丸、塊狀、或壓縮,
提高了材料的操作特性,為交通運輸、倉儲等提供了方便。制丸和壓塊
已在很多國家應用了很多年年。威廉·史密斯是最先發(fā)表聯(lián)合生物質致密化國家專利(1880)的。史密斯使用蒸汽錘(66°C[150°F])壓實鋸木廠的廢物。
傳統(tǒng)工藝致密化生物質能可以分為制粒,擠壓和壓塊,使用壓板、切粒機、螺旋壓力機,活塞或輥壓。制粒和塊狀是用于生物質致密化的最常見固體燃料成型的技術。這些高壓壓實技術,也叫“擠壓”技術,通常使用一個螺旋壓力機或活塞成型機(Khansamahs et al . 2005年)。
螺旋壓力機的原理是,生物量是通過加熱,連續(xù)擠壓、模具成型。螺旋壓力機成型塊質量和生產(chǎn)過程的優(yōu)于活塞成型技術。然而,比較部件磨損,活塞成型機,更有優(yōu)勢。,實驗表明,螺桿螺旋沖壓件需要更多的維護。螺旋壓力機有助于實現(xiàn)統(tǒng)一和有效的燃燒,產(chǎn)生的成型塊就表面碳化,可以更好更快地傳熱。
許多研究人員致力于研究致密化的秸稈和生物質利用顆粒的研究,例如,Tabi和Khansamahs(1996)致力于研究紫花苜蓿顆粒的壓縮性能。Amandine等(2002)研究了影響模具的壓力。
在疏松特點的生物質。Adapa eta研究制壓縮苜蓿產(chǎn)品。李和劉(2000)調查了木材的高壓致密化成型以形成一個更好的燃料。摩尼等人(2006)研究了實特性對木質纖維生物質使用的影響。
2.1顆粒成型的機制
吸生物量的質量取決于諸多過程變量,像模具直徑、成型溫度、壓力、,預熱的生物量。Tabi(1996)和Tabi和Khansamahs(1996 b和c)的實驗表明,成型塊的壓實可以歸功于彈性和塑性變形的粒子在存在更高的壓力。根據(jù)他們的研究,有兩個重要方面被認為和成型效果有關(1)粒子形成顆粒的能力的大小和機械強度的大小,(2)過程中增加密度增加的比例。
在確定可能的機制成型機制的過程中,顆粒成型的形成的原因可能是固體粘合劑(薩思綏,1973)。由化學反應、燒結、硬化產(chǎn)生的粘結劑在壓縮、堅實的的過程中都起著重要作用,都是在高壓下,凝固融化的物質,或結晶解散了的材料。壓力也降低了致密化過程中的粒子的熔點,使他們產(chǎn)生了新的效應,從而增加了接觸面積和改變熔點向新的均衡水平(紐約,皮奇,1984年)。其他類水物質的存在在制粒導致形成毛細管壓力,從而增加粒子粘結。這個模型,一般用于描述液體在某種情況下可能發(fā)生的反應。
在充滿了液體的物質中形成了類圓環(huán)的接觸點,空氣中形成了一個個連續(xù)的階段。這個鍵的強度由于負面毛細管壓力和液體的表面張力所決定。纜索狀態(tài)的
發(fā)生在液體含量增加,導致較低的孔喉體積和合并液體環(huán),并形成連續(xù)的網(wǎng)絡和捕獲空氣的階段。在毛細管和液滴的狀態(tài),液體是被完全包圍凝聚的,而且主要的粒子僅存在的表面張力。
粒子之間的吸引力是由于范德瓦爾斯靜電和磁力組成。 吸引力與粒子之間的距離是成反比,更大的距離產(chǎn)生更小的吸引力。靜電引力的影響是可以忽略不計,粒子粘結通常都存在于常遇見的干細粉,在磁力存在時摩擦也有可能導致粒子粘結(頓和奧利弗1981)。聯(lián)鎖的粒子可以幫助提供足夠的機械力量克服彈性恢復壓縮后造成破壞性的力量(Frump 1962)。
摩尼等人(2002)假定在生物質致密化的的過程中存在三個階段。在第一階段,顆粒重排自己形成一個大的顆粒,那里多數(shù)的粒子保留它們的屬性,能量損耗是由于inter-particle和particle-to-wall摩擦引起的。 在第二階段,粒子相互擠壓,發(fā)生蘇星和彈性變形,這顯著增加了接觸面積,粒子通過范德瓦爾斯靜電引力,發(fā)生作用,在第三階段,在很大壓力的作用下,顆粒的密度達到滿足要求的的程度。第個三階段結束后,由于壓力減少和70%的顆粒的整合,變形和破損的粒子可以不再改變形狀。
在整個過程中,重要的是理解致密化過程和通過改變變量控制它的性能,例如一組相關的的溫度、壓力、和設備。如果不是優(yōu)化或有意控制,這些變量可以影響成型塊的產(chǎn)量有嚴重的負面影響。同樣重要的是要明白,材料的屈服點和產(chǎn)品的密度。因為都是裝入在成型腔,通過施加壓力,粒子脆性斷裂。這些過程可能會導致機械聯(lián)鎖。
生物量的化學成分,其中包括化合物如纖維素、半纖維素,蛋白質、淀粉、木質素、粗纖維、脂肪,也影響到致密化過程。在壓縮時在較高的溫度下,蛋白質和淀粉plasticizes作為粘合劑,它有助于在增加顆粒的強度(Briggs et al . 1999年)。 淀粉在于生物質能致密化過程中作為粘結劑存在。在使用一種富含淀粉的生物的致密化擠出工藝壓塊,存在的熱量和濕氣的淀粉和可以讓在更好的成型(木材1987;托馬斯等al . 1998年)。 高溫和壓力,這通常是致密化過程中遇到情況,疲軟的木質素,能改善生物量的結合能力。低熱固性屬性和低熔點(140°C)使得木質素可以是成型塊更好的被壓縮( 2004年)。蛋白質、淀粉、生物量和木質素等都可以幫助壓縮。
在壓縮紫花苜蓿、小麥和大麥磨的過程中(Tabi和Khansamahs 1996和1996 b;Adapa et al。2002 b和2009;Mani et al . 2004年)。 應用高壓縮壓力在生物質致密化會導致生物質顆粒破碎,從而破碎細胞結構、蛋白質和果膠作為自然的粘合劑(Polanski和格雷厄姆1984;O 'Docherty和惠勒1984年)。它們之間的主要差異生物質和其他材料,像陶瓷粉末和制藥粉,是存在自然綁定材料(Aliyahs和莫雷2006)。這些存在的物質(如樹皮、莖、葉等,在生物物質進一步復雜化的過程中,能幫助理解壓實的行為。最近,Aliyahs和莫雷(2010)使用掃描電子顯微鏡(SEM),研究對于了解solid-type橋梁中形成塊狀和壓縮塊的玉米秸稈和柳枝稷。在微觀水平上進行更多的研究,使用類似的技術,掃描電鏡和透射電鏡能幫助 理解交互的原料和過程變量的質量屬性。
2.1.1致密化技術
2.1.1.1螺桿壓縮或擠壓
壓實的目的是使擠出機擠出讓更小的微粒,在壓力的作用下,使得壓塊更加緊密,,提供更強的壓縮材料。在擠壓、材料在成型筒的作用下,旋轉螺絲,產(chǎn)生很大的壓力,從而導致重大壓力梯度和摩擦由于生物質剪切。這個綜合作用的墻壁摩擦在成型筒壁、內部摩擦材料,和高轉速( 600 rpm)的螺絲,在封閉的系統(tǒng)提高溫度和加熱生物質。這些生物質強行通過了擠壓模具形成煤球或化球團所要求的形狀。如果被縮減,生物質燃料進一步壓縮。如果在系統(tǒng)產(chǎn)生的熱量不夠對材料的達成pseudo-plastic狀態(tài)平穩(wěn)擠壓、加熱器提供從擠出機無論是使用外部或者內部加熱器(Grover和Mishap 1996)。圖2顯示了典型的螺桿擠出機,與不同的區(qū)域進行處理的生物質。處理的生物質用螺絲釘壓實涉及以下機制(Grover和Mishap 1996):
1、在到達壓縮區(qū)(這個常所形成的逐漸變細的桶)前,生物量部分壓縮。這是在第一個階段中,最大的需要能量來克服粒子摩擦。
2.一旦生物質是在壓縮區(qū),由于高溫度(200 - 250°C)材料變得相對軟,并在此加熱、材料失去彈性性質,它的結果在增加的區(qū)域inter-particle聯(lián)系。 在這個階段,顆粒緊密結合在一起,在其通過壓縮區(qū),生物量能吸收摩擦以便它可被加熱和使其其質量均勻。
3.在第三階段,生物質進入錐形死,由于一般的溫度的280°C水分是進一步蒸發(fā),,有助于更好地壓縮生物量和增加壓縮的材料。
4.在最后階段,移除蒸汽和壓實的壓力,使其成型。
以下是螺桿壓縮的優(yōu)點(Grover和Mishap 1996):
螺旋壓力機的輸出是持續(xù)的,壓塊的大小更加統(tǒng)一。壓塊的外表面部分碳化,這可以幫助促進點火和燃燒。這也能保護壓塊從周圍的水分。一個同心圓洞形成的壓塊有助于更好地燃燒是因為空氣流通在燃燒。機器運行順利,沒有任何沖擊負荷。機器零件和油機使用是沒有的灰塵或原料污染。
缺點是螺桿壓縮相比,本機對功率的要求比較高。(格羅弗和米什拉1996年)
表1。島田的SPMM850擠壓機擠出通用規(guī)范生產(chǎn)。
之前擠壓(硬或軟木材原料),含水率8%,平均粒徑2-6毫米,容重200 kg/m3。擠壓后,水分含量為4%,容重1400 kg/m3。熱值4870千卡(8400 BTU/磅)灰分含量0.35-0.5%
擠出機
高剪切擠出機
這些擠出機設計,生產(chǎn)種類繁多的熱處理產(chǎn)品。高剪切擠出機被列為high-temperature/short-time(HTST)設備,其中,生物量通常用蒸汽或熱水預熱,然后通過高剪切烹飪的處理,擠出機進一步的工作產(chǎn)品,并迅速提高其溫度(哈珀1981年)。
低剪切擠出機
低剪切擠出機,具有很小的剪切,高壓縮比。這些擠出機用于擠出低粘度材料??蓱糜跓岢尚突驍D壓成型,剪切粘性小是因為性耗散的發(fā)生是由于相對較低的粘度,材料被壓縮前加熱產(chǎn)品(哈珀1981年)
2.1.1.2壓塊
適用于松散的,規(guī)模較小的顆粒,使用壓縮機進行生物質致密化是一個可行的和有吸引力的利用生物燃料應用的解決方案。壓塊通常采用液壓機械,或輥壓機。壓塊的密度一般為900至1300 kg/m3的。
生物燃料型煤是一種清潔的綠色燃料,可以在普通爐,鍋爐使用。
與其他壓縮方式相比,壓塊機可以處理直徑較大規(guī)模的顆粒和對顆粒直徑要求不高。不需要粘合劑的的作用,壓縮塊的優(yōu)點是增加熱值,燃燒特性的改善,減少夾帶的顆粒物排放,形狀均勻的尺寸合適。此外,使用其它固體燃料的爐,壓塊也可以使用。 使用生物質型壓塊在工業(yè)爐球團的主要缺點是由于灰排渣堿含量從生物質制成的壓塊(Amandine等,2002)。
生物質壓塊過程中,材料的高溫高壓下被壓縮。在壓塊生物質顆粒之間由于熱塑流動,形成了木質素。木質素,它是一種天然的粘合劑,在高溫和壓力形成高密度的壓縮塊。
液壓柱塞泵
液壓活塞壓力機是常用的生物質致密壓塊機?;钊ㄟ^高壓液壓系統(tǒng)的電動馬達傳送能量。 液壓機的輸出速度較低,因為氣缸的運動速度較機械往復慢。成型塊密度超過1000公斤/立方米,散裝密度較低,因此產(chǎn)量被限制為40 - 135公斤/小時。然而,這些機器可以成型的的水分含量比為的15%,為機械活塞成型機。為了提高生產(chǎn)能力,一些壓塊機采用連續(xù)壓塊形式。
附錄2:生物質燃料英文翻譯
1. INTRODUCTION
Behind coal and oil,biomass is the third largest energy resource in the world(Ba pat et al.1997).Until the mid-19th century,biomass dominated global energy consumption.Even though increaseful-fuel use has prompted a reduction in biomass consumption for energy purposes over the past 55years,biomass still provides about 1.25 billion tons of oil equivalent(B toe)or about 14%of the world’annuals energy consumption(Hirohito et al.2006;Werther et al.2000;and Zen et al.2007).Out of the230 megajoules of estimated global primary energy,56 megajoules—nearly one-fourth of the global primary—are used for agricultural practices(WEC 1994).Wood fuels,agricultural straws,and grasses archeal most prominent biomass energy sources.Biomass,if properly managed,offers many advantages,the most important being a renewable and sustainable energy feedstock.It can significantly reduce net carbon emissions when compared to fossil fuels.For this reason,renewable and sustainable fuel is considered a clean development mechanism(CDM)for reducing greenhouse gas(GHG)emissions(Li and H 2003).
The least-expensive biomass resources are the waste products from wood or Lagro-processing operations, but their supply is limited. To overcome this limitation, countries around the world are considering biomass crops for energy purposes and have begun developing technologies to use biomass more efficiently. In the United States (U.S.) and most of Europe, biomass has already penetrated the energy market. The U.S. and Sweden obtain about 4% and 13% of their energy, respectively, from biomass (Hall et al. 1992), and Sweden is implementing initiatives to phase out nuclear plants, reduce fossil-fuel energy usage, and increase the use of biomass energy (Breeden 2006).
One of the major limitations of biomass for energy purposes is its low bulk density, typically rangingfrom80–100kg/m3 for agricultural straws and grasses and 150-200 kg/m for woody biomass, like wood chips (Khansamahs and Benton 2006; Mitchell et al. 2007). The low bulk densities of biomass often make the material difficult to store, transport, and use. Low bulk density also presents challenges for technologies such as coal co firing, because the bulk density difference causes difficulties in feeding the fuel into the boiler and reduces burning efficiencies. Densification is one promising option for overcoming these limitations. During densification, biomass is mechanically compressed, increasing its density about ten fold. Commercially, densification of biomass is performed using pellet mills, other extrusion processes, briquetting presses, or roller presses in order to help overcome feeding, storing, handling, and transport problems.
Densification technologies available today have been developed for other enterprises and are not optimized for a biomass-to-energy industry’s supply system logistics or a conversion facility’s feedstock specifications requirements.This document provides a comprehensive review of the current state of technology in biomass densification research and development and provides parameters for optimization.Densification processes and technologies are described along with the impacts of process and feed stock variables and biochemical composition of the biomass on feedstock quality attributes like durability,bulk density,pellet density,and caloric value.This review includes compaction and response surface models and a discussion of optimization procedures.A review of international solid fuel standards and an introduction of companies dealing with densification equipment and heat treatment technologies are also included.
The specific objectives of this review include:
Technical reviews:
- Mechanisms of particle bonding during densification
- Densification technologies, including extrusion, briquetting, pelleting, and agglomeration
- Specific energy requirements of pellet mill, briquette press, and extruder
- Effects of process, feedstock variables, and biomass biochemical composition on the
densification process
- Important quality attributes of densified biomass
- Effects of pretreatments such as grinding, preheating, steam explosion, torrefaction, and ammonia
fiber expansion (AFEX) on biomass quality
- Compaction models
- Procedures for response surface modeling and optimization.
International solid fuel standards.
Equipment suppliers:
- Densification equipment
- Heat treatment technologies.
2. BIOMASS DENSIFICATION
Biomass—in its original form—is difficult to successfully use as a fuel in large-scale applications because it is bulky, wet, and dispersed. Biomass densification represents technologies for converting plant residues into fuel. These technologies are also known as pelleting, briquetting, or agglomeration, which improves the handling characteristics of the materials for transport, storage, etc. Pelleting and briquetting have been applied for many years in several countries. William Smith was the first to be issued a United States patent (1880) for biomass densification. Using a steam hammer (at 66°C [150°F]), Smith compacted waste from sawmills.
Conventional processes for biomass densification can be classified into baling, pelletization, extrusion, and briquetting, which are carried out using a bailer, pelletizer, screw press, piston or a roller press. Pelletization and briquetting are the most common processes used for biomass densification for solid fuel applications. These high-pressure compaction technologies, also called “binder less” technologies, are usually carried out using either a screw press or a piston press (Khansamahs et al. 2005).
In a screw press, the biomass is extruded continuously through a heated, tapered die. The briquette quality and production process of a screw press are superior to piston press technology. However, comparing wear of parts in a piston press, like a ram and die, to wear observed in a screw press shows that the screw press parts require more maintenance. The central hole incorporated into the densified logs produced by a screw press helps achieve uniform and efficient combustion, and the resulting logs can be carbonized more quickly due to better heat transfer.
Many researchers have worked on the densification of herbaceous and woody biomass using pellet mills and screw/piston presses. For instance, Tabi and Khansamahs (1996) worked on understanding the compression characteristics of alfalfa pellets. Amandine et al. (2002) examined the influence of die pressure on relaxation characteristics of briquetted biomass. Adapa et al. (2002b and 2003) studied pelleting fractionated alfalfa products. Li and Li (2000) investigated high-pressure densification of wood residues to form an upgraded fuel. Mani et al. (2006) researched the compaction characteristics of lignocellulosic biomass using an Ins tron, and Tumulus et al. (2010a) studied the effect of pelleting process variables on the quality attributes of a wheat distiller’s dried grains with solubles.
2.1 Mechanisms of Bonding of Particles
The quality of the densified biomass depends on a number of process variables, like die diameter, die temperature, pressure, usage of binders, and preheating of the biomass mix. Tabi (1996) and Tabi and Khansamahs (1996b and c) suggest that the compaction of the biomass during pelletization can be attributed to elastic and plastic deformation of the particles at higher pressures. According to their study, the two important aspects to be considered during pelletization are (1) the ability of the particles to form pellets with considerable mechanical strength; and (2) the ability of the process to increase density. The first is a fundamental behavior issue that details which type of bonding or interlocking mechanism results in better densified biomass.
The possible mechanism of binding during agglomeration could be due to the formation of solid bridges (Frump 1962; Pastry and Understeer 1973). During compaction, solid bridges are developed by chemical reactions and sintering, hardening of the binder, solidification of the melted substances, or crystallization of the dissolved materials. The pressure applied during densification also reduces the melting point of the particles and causes them to move towards one another, thereby increasing the contact area and changing the melting point to a new equilibrium level (York and Pilpul 1972; Piet sch 1984).
The presence of liquid-like water during pelletization results in interfacial forces and capillary pressures, thus increasing particle bonding. The models that are commonly used to describe the liquid distribution in moist agglomerates are pendular, funicular, capillary, and liquid-droplet states (Pastry and Understeer 1973; Piet sch 1984; Gheber-Lassie 1989). The pendular state arises when the void spaces re filled with liquid to form lens-like rings at the point of contact; the air forms a continuous phase. The bond strength is due to negative capillary pressure and surface tension of the liquid. The funicular curvicostate when the liquid content is increased, which results in lower pore volume and coalescence of the liquid rings, and in the formation of a continuous network and trapping of the air phase. In the capillary and droplet state, the agglomerate is completely enveloped by the liquid, and the primary particles are held only by the surface tension of the droplet.
The attraction between the particles is due to van der Waal’s electrostatic or magnetic forces (Schoenbergian 1971). The attraction is inversely proportional to the distance between the particles, where larger distances have less attraction. Electrostatic forces’ influence on particle bonding is negligible, and heme are commonly encountered in dry fine powders where inter-particle friction can also contribute to particle bonding when magnetic forces exist (Sherrington and Oliver 1981). Closed bonds or interlocking occurs in fibers, platelets, and bulk particles, where particles interlock or fold about each other, thereby causing the bonding (Piet sch 1984). Interlocking of the particles can help provide sufficient mechanical strength to overcome the destructive forces caused by elastic recovery after compression (Frump 1962).
Mani et al. (2002) postulated that there are three stages during densification of biomass. In the first stage, particles rearrange themselves to form a closely packed mass where most of the particles retain their properties and the energy is dissipated due to inter-particle and particle-to-wall friction. In the second stage, the particles are forced against each other and undergo plastic and elastic deformation, which increases the inter-particle contact significantly; particles become bonded through van der Waal’electroosmotic forces. In the third phase, a significant reduction in volume at higher pressures results in the density of the pellet reaching the true density of the component ingredients.
By the end of the third stage, the deformed and broken particles can no longer change positions due to a decreased number of cavities and a 70% inter-particle conformity. It is important to understand the densification process and the variables that govern its performance, such as the combination of temperature, pressure, and equipment. If not optimized or at least carefully controlled, these variables can influence the antra-particle cavities of the biomass and have a serious negative effect on conversion processes like enzymatic hydrolysis. It is also important to understand that the yield point of the material governs the rate of approach to the true density of the product. Because the loading is hydrostatic in character, the application of pressure will fracture the brittle particles. These processes may result in mechanical interlocking. Figure 1 shows the deformation mechanism of the powder particles under compression (Comsomol 2007; Denny 2002).
The chemical composition of the biomass, which includes compounds like cellulose, hemicelluloses, protein, starch, lignin, crude fiber, fat, and ash, also affect the densification process. During compression at high temperatures, the protein and starch plasticizes and acts as a binder, which assists in increasing the strength of the pellet (Briggs et al. 1999). Starch present in the biomass acts as binder during densification. During densification of starch-rich biomass using an extrusion process like pelleting, the presence of heat and moisture gelatinizes the starch and results in better binding (Wood 1987; Thomas et al. 1998). High temperature and pressure, which are normally encountered during the densification process, results in softening of the lignin and improves the binding ability of the biomass. Low thermosetting properties and a low melting point (140°C) help lignin take an active part in the binding phenomena (van Dam et al. 2004). Protein, starch, and lignin present in biomass takes an active part during pelleting of alfalfa, wheat, and barley grinds (Tabi and Khansamahs 1996a and 1996b; Adapa et al.2002b and 2009; Mani et al. 2004). Application of high compression pressures during biomass densification can result in crushing the biomass particles, thus opening up the cell structure and exposing the protein and pectin that act as natural binders (Polanski and Graham 1984; O’Docherty and Wheeler 1984). The major difference between biomass and other materials, like ceramic powders and pharmaceutical powders, is the presence of natural binding materials (Aliyahs and Corey 2006). The presence of components like bark, stems, leaves, etc., in the biomass further complicates understanding of the compaction behavior. Recently, Aliyahs and Corey (2010) used scanning electron microscope (SEM) studies for understanding the solid-type bridges formed during briquetting and pelleting of corn stover and switchgrass. More studies at a micro level using techniques like SEM and TEM will be useful in understanding the interaction of feedstock and process variables on the quality attributes of densified biomass.
2.1.1 Densification Technologies
2.1.1.1 Screw Compaction or Extrusion
The aim of compaction using an extruder is to bring the smaller particles closer so that the forces acting betw
收藏