4座微型客貨兩用車(chē)設(shè)計(jì)(離合器及操縱機(jī)構(gòu)設(shè)計(jì))
4座微型客貨兩用車(chē)設(shè)計(jì)(離合器及操縱機(jī)構(gòu)設(shè)計(jì)),微型,客貨兩用車(chē),設(shè)計(jì),離合器,操縱,機(jī)構(gòu)
THE RESEARCH AND DESIGN USING CAD SYSTEM FOR THE CLUTCH OF AUTOMOBILEClutch is used to transfer and switch of the powers which are coming from the engine. In automobile, clutch is connected with engine and derailleur. It can shut of and stably transfer the power between them. How to reasonably, efectively and speedily design clutch always is the pursuing destination of all clutch factories. The appearance of CAD which is the abbreviation of computer aided design make it possible. Automobile CAD is the forerunner of CAD all the times. CAD is fist used in automotive industry and become more and more indivisible with CAM, CAE and CAP furthermore, integration is becoming to reality. Researching how to use computer to aid us design the automobile clutch and how to develop a useful and advanced automobile clutch computer aided design system-abbreviation is ACCAD that can make a steady system framework for automobile cultch integrated design and manufacture system. are the destination of this thesis. ACCAD system should firstly be able to aid engineer design clutch, secondly to aid engineer analyze the designed clutch, finally to organize and manage the data of design. From the long-term consideration it should also be able to aid workshop manufacture clutch and help manager supervise all the lifecycle of clutch. So it should have a core which can integrate all these subsystem. Engineering database (EDB) is just for this use and Using EDB to construct CIMS become an inevitable current. In order to expand ACCAD and realize clutch CIMS in the future ACCAD system also need EDB as the core to integrate each design and management subsystem into a whole system. At the third chapter of this thesis the technology of EDB and how to design automobile clutch EDB are researched and automobile clutch EDB is set up according to the framework of entire database, project database and design database. The traditional procedures of the design of automobile clutch are: selecting storing coeficient, designing clutch structure type, friction flat, clutch sketch, assembled module and each part of clutch. In our country, all these procedure are handmade, but in the coming years with the application of computer aided drawing software such as AutoCAD of AutoDesk corp. engineering drawing can basically be done by computer. But the depicting capability of this two-dimension engineering drawing module is so deficient that it can only be used as drawings and cant be used to analyze by computer. Along with the appearance of B-P modeling and curve-based or solid-based modeling, mechanic parts are denoted by three-dimension module which can beter aid engineer design and analyze them. But this module loses parts of the whole information of them, so it results in much dificulty to integrate aided design subsystem, aided manufacture subsystem and computer analyzing subsystem. Feature-based modeling can just make up this shortcoming, and also if it combines with parameter design technology it can enhance the capability not only of depicting but also of fast amending. At the forth chapter of this thesis the technology of feature-based is researched and the parametric feature-based solid models are created upon MDT that is belonging to AutoDesk corporation. In order to aided engineers to design clutch faster computer is used to simulate engineers to use variant design technology to design clutch products that are based on original models. Variant design technology has some intelligence. Intelligent CAD is a direction of developing CAD. At the fifth chapter of this thesis the technology of variant design is researched and variant design of automobile clutch is achieved on MDT by the technology of parameter table-driven and feature restrained Besides some degree of integrity and intelligence ACCAD system should have some degree of automation, that is to say that ACCAD can automatically design clutch according to primitive design requests, analyze, check and optimize some basic parameters of clutch. At the sixth chapter of this thesis the combining model of clutch is analyzed, some formulas of designing and calculating basic parameter are deduced, the working instances of diaphragm spring are analyzed and the characters of load-distortion and stress-strain are calculated simulatively by the formulas of A-L which are approbatory internationally nowadays. The optimizations of some basic parameters and diaphragm spring are carried out by multi-body arithmetic in which design destinations, design restrictions and the primitive value of design variables can be changed according to real demands. Instances deduction and design templates are used to design the model of each part of clutch and all these models are assembled automatically after that basic parameters and structure type are completed according to primitive design demands. The design templates are deduced in existing design instance of clutch product by inteligent instance-deducing technology. Then designers can mend and to-and-fro design them till they can meet the design demands. So computer aided function and mans initiative can be fully enlarged, automatic design and mutual design are combined indeed .It needs not only much knowledge of automobile clutch design and CAD but also much high lever of software design and computer application to really realize such a complicate and advanced ACCAD system. So I also researched the method of object-oriented and the operation system of Windows and study many sorts of program design language. The theory of software engineering is used to analyze ACCAD system in requirement, function structure, flow chart, project design and module design. The software developing tools of Visual Basic and Visual C+ are used to design and implement the ACCAD system. Yi-Dong clutch corporation have applied it to design clutch. Practice proves that the ACCAD system can aid designers to design clutch well, remarkably improve the ability of clutch product design, greatly shorten the design cycle and also it has very high stability and extensibility.INVESTIGATION TO DYNAMICS AND CONTROL OFVEHICLE AMT CLUTCHES DURING ENGAGEMENTChina Automotive Parts enterprises face more and more pressure and challenge with China joining WTO.The global Automotive and Parts MNC are gradually entering the lastly and largest potential market of the world.The local automotive industry especially parts is not so good as MNC no matter in scale, capital capacity, products technical level and marketing level.So in order the to exist,the local automotive parts enterprises must improve themselves as quickly as possible in some the fields. One of the important reasons for this risk is the slow Product Engineering with low technical content.It is caused by several reasons that are outdated engineering method,insufficient working experiences,low quality of the working people and the outdated methodology of product Engineering,and the last one is the most important reason.In comparison with hydraulic Automatic Transmission (AT) and Continuously Variable Transmission (CVT), Automatic Mechanical Transmission (AMT) has advantages of much lower cost in manufacturing and easier installation in driveline system .This means that there exists a vast potential market for development of such a mechatronical technology. As an important functional module in AMT vehicles, however, the automatic clutches developed by far still have some shortcomings, for example, of road startup failure, considerable shock, unstable shifting, friction-caused service life reduction, and time-delay response. The key concern is therefore concentrated in this dissertation on real implementation of optimal transient responses and control laws during engagement of the clutches, and detailed investigations are made both in theory and experiment. Strong nonlinearities exist in such component systems as engine, clutch membrane spring and servo actuator and consequently dificulties are encountered in design of the optimal control for improving transient responses of the automatic clutch. A system synthesis is proposed herein for the study of nonlinear dynamics and control of AMT automatic clutches. Based on principles of automotive powertrain systems, the main system under consideration can be decomposed into two sub-systems, engine and transmission systems. The Popov super stability theory has adopted for the first time in association with reference, model following adaptive control for the engine. monitoring. The engine monitor requires accurate predictions of rational velocities. A prediction model is constructed on the basis of flat neural network A fast recursive algorithm is used To improve the learning speed by forgetting factor. Accordingly, the present neural network algorithm leads to considerable reduction of efort in network weighting matrix as wel as increase of self-learning and adaptability of neural network algorithms to nonlinear and nonstationary systems. It has been shown by comparison of the numerical results with experiments that the modified algorithm is proved to be reliable and efective in the engine condition monitoring. In modeling the system, the load-deflection relationship of the clutch membrane spring is generally treated as a black box, and as a result many advanced control methods can not be applied. A new approach for the black box is required nevertheless in development of the accurate model. The nonlinear relationship is mathematically derived out for the clutch system during engagement and a further progress is thus made to certain extent for the Almen-Lazslo method. By matching control inputs of the two subsystems, a synthetically optimal performance of the system can be achieved. It can be seen that by the system synthesis, not only the design of a feedback controller is accommodated according to longitudinal dynamic requirements of the whole vehicle, but an efective procedure is established for solving problems of time-delay and inaccuracy due to the use of the analysis method of upper-lower layers. Diferential geometry provides a powerful tool for the analysis of nonlinear dynamic systems. With consideration of the automatic clutch which is a typical afine nonlinear system, the diferential manifold and corresponding a companion form to the original system with nonlinearities can be constructed by using feedback linearization approach. It is demonstrated by simulations and experiments that this method simplifies the design of the controller, and is of practical significance for real engineering applications. In this dissertation, operator and its transform in frequency domain are introduced for the first time into the field of automotive electronics technology. In comparison with the conventional z operator, digital iterations of operator are featured by higher precision and more stability while sample time T -4 0.The nonlinear sliding mode controller is taken as an example, the implementation form of operator discretization control, the error analysis and the algorithms stability are studied both theoty and engineering application. In high frequency sampling systems the approach has advantages in industrial applications and enriches its new fields of application, especially in vehicle eletronics. Based upon the minimum value principle, a multi-objective optimal control is applied to derive out for the first time the optimal response in analytical form by compromising longitudinal shock and plane slipage of the automatic clutch related with each other in the transmission sub-systems. The real significance of the synthetic optimal control lies in expression of the theoretical optimal performance. For preventing the control system from system uncertainties and external perturbations the robust sliding mode controller is designed to guarantee the system to trace the optimal trajectory. Since dynamic properties of the sliding mode is invariant to extraneous disturbance, the SMC method may apply for A kind of complicated systems with nonlinearities and uncertainties like the automatic clutch. It is shown through numerical simulations that errors of the SMC in reference model following are far less than the PID controler whenever the damping orifice flux coeficient of an on-of solenoid, the frictional plate wear qualilty, friction coeficient and the driveline elastic coeficient may be deviated in a permissible range, respectively. Hence, the present work possesses of significant value in engineering application. As an important part of the dissertation, the virtual mechanical prototyping and real on-vehicle experiments for the automatic clutch system are made, respectively. The virtual machine is modeled in ADAMS software and verified by real vehicle experiments. Therefore, through comparison of the virtual experiments within ADAMS environment with theoretical predictions for transient responses of the clutch during engagement, reliable and efective instructions are provided for design of the hydraulic actuator and PC controller required in real vehicle experiments. The control apparatus for automatic clutch Include sensors, microcomputer and their interfaces. All experiments are carried out on the Santana LX car, and much atention is focused to typical dificult working conditions, such as small throtle angle, heavy load, high gear and steep ramp. It is shown by the results obtained from the experiments that fairly good transient responses during the clutch engagement are achieved. By the control strategies presented in this dissertation, the engine is prevented from flameout, moreover, vehicle startup and gear shift smoothly can be adjusted with short friction duration and quick response of the actuator. All these mean that the adaptability for subjective will, time varying driving conditions of vehicle and complicated surroundings. In a word, on the basic of theoretical research and control technology, the performance of AMT automatic clutch is improved markedly, moreover, the apparatus for experiments establishes a massy foundation for future product development. 汽車(chē)離合器汽車(chē)離合器 CADCAD 系統(tǒng)的研究與設(shè)計(jì)系統(tǒng)的研究與設(shè)計(jì)離合器是用來(lái)傳遞和切斷從發(fā)動(dòng)機(jī)傳來(lái)的動(dòng)力的一種機(jī)構(gòu)。在汽車(chē)上, 它和發(fā)動(dòng)機(jī)的飛輪相連接,切斷和平穩(wěn)地實(shí)現(xiàn)發(fā)動(dòng)機(jī)和變速器之間的動(dòng)力傳遞。如何合理、高效、快捷地設(shè)計(jì)離合器一直是國(guó)內(nèi)外離合器廠家追求的目標(biāo),CAD (Computer Aided Design)的誕生將此希望變?yōu)榭赡?。汽?chē) CAD 一直是 CAD 技術(shù)的先驅(qū),CAD 技術(shù)最先是應(yīng)用在汽車(chē)工業(yè)上,而且與 CAM. CAE 和 CAPP 越來(lái)越不可分割,集成化正成為現(xiàn)實(shí)。研究如何應(yīng)用計(jì)算機(jī)來(lái)輔助設(shè)計(jì)汽車(chē)離合器,以及如何設(shè)計(jì)開(kāi)發(fā)出一個(gè)實(shí)用的、先進(jìn)的汽車(chē)離合器 CAD 系統(tǒng) 簡(jiǎn)稱 ACCAD (Automotive Clutch CAD),為實(shí)現(xiàn)汽車(chē)離合器集成設(shè)計(jì)制造系統(tǒng)打下一個(gè)堅(jiān)實(shí)的系統(tǒng)框架,正是本文的目的。 汽車(chē)離合器 CAD 系統(tǒng)首先必須能夠輔助工程設(shè)計(jì)人員設(shè)計(jì)離合器、其次能夠輔助設(shè)計(jì)人員分析設(shè)計(jì)的離合器、最后還能夠很好的組織和管理設(shè)計(jì)過(guò)程中的數(shù)據(jù)。從長(zhǎng)遠(yuǎn)考慮它還應(yīng)該能夠輔助生產(chǎn)車(chē)間制造新產(chǎn)品、管理人員管理整個(gè)產(chǎn)品的生命周期,所以必須有一個(gè)核心能夠?qū)⑦@些子系統(tǒng)集成在一起。工程數(shù)據(jù)庫(kù)正是在這種需求下誕生的,以工程數(shù)據(jù)庫(kù)為核心構(gòu)建 CIMS 已成了必然的趨勢(shì)。為今后汽車(chē)離合器 CAD 系統(tǒng)的擴(kuò)充和發(fā)展,以及逐步實(shí)現(xiàn) CIMS 創(chuàng)建一個(gè)堅(jiān)實(shí)的框架,ACCAD 系統(tǒng)同樣也需要以工程數(shù)據(jù)庫(kù)為核心將個(gè)設(shè)計(jì)和管理子系統(tǒng)集成為一個(gè)整體。本文第三章對(duì)工程數(shù)據(jù)庫(kù)技術(shù)進(jìn)行研究,并對(duì)汽車(chē)離合器 CAD 系統(tǒng)的工程數(shù)據(jù)庫(kù)設(shè)計(jì)進(jìn)行了討論,按全局庫(kù)、項(xiàng)目庫(kù)和設(shè)計(jì)庫(kù)的組織結(jié)構(gòu)創(chuàng)建了汽車(chē)離合器工程數(shù)據(jù)庫(kù)。 傳統(tǒng)的汽車(chē)離合器設(shè)計(jì)基本上是選擇后備系數(shù)、離合器型式、設(shè)計(jì)摩擦片、設(shè)計(jì)草圖、設(shè)計(jì)裝配總成、設(shè)計(jì)各零件。在國(guó)內(nèi),這些過(guò)程基本上都是人工進(jìn)行的,但近些年來(lái),隨著計(jì)算機(jī)輔助繪圖軟件如 AutoDesk 公司的 AutoCAD 的應(yīng)用,工程圖的繪制基本上可在計(jì)算機(jī)上進(jìn)行。用這種二維工程圖的模型,計(jì)算機(jī)只能輔助工程設(shè)計(jì)人員繪制工程圖紙,無(wú)法對(duì)零部件進(jìn)行分析,這種模型描述能力低下。隨著線框建模技術(shù)、基于曲面或?qū)嶓w建模技術(shù)的出現(xiàn),零部件在計(jì)算機(jī)中將以三維的方式表示,它能夠很好地輔助工程設(shè)計(jì)人員設(shè)計(jì)和分析零部件。但這種模型缺乏對(duì)產(chǎn)品零部件信息的完整描述, 從而導(dǎo)致計(jì)算機(jī)輔助設(shè)計(jì)系統(tǒng)、制造系統(tǒng)和分析系統(tǒng)集成困難。特征建模技術(shù)正好能夠彌補(bǔ)這種缺陷,而將特征建模技術(shù)和參數(shù)化建模技術(shù)結(jié)合起來(lái)則既能提高產(chǎn)品模型的描述能力又能夠提高產(chǎn)品模型的快速修改能力。本文第四章對(duì)參數(shù)化特征建模技術(shù)進(jìn)行研究,并用參數(shù)化特征建模技術(shù)在 AutoDesk 公司的 Mechanical Desktop(簡(jiǎn)稱 MDT)軟件上對(duì)汽車(chē)離合器零部件建立了產(chǎn)品模型。 為使汽車(chē)離合器 CAD 系統(tǒng)輔助設(shè)計(jì)人員更快地開(kāi)發(fā)離合器新產(chǎn)品,讓計(jì)算機(jī)模擬工程設(shè)計(jì)人員根據(jù)原有的產(chǎn)品模型進(jìn)行變型設(shè)計(jì)是 CAD 系統(tǒng)智能化的一個(gè)表現(xiàn)。智能 CAD 是 CAD 的一個(gè)發(fā)展方向。本文的第五章對(duì)變型設(shè)計(jì)技術(shù)進(jìn)行了研究,并應(yīng)用參數(shù)表驅(qū)動(dòng)和特征抑制技術(shù)在 MDT 上實(shí)現(xiàn)了汽車(chē)離合器零部件的智能化變型設(shè)計(jì)。 汽車(chē)離合器 CAD 系統(tǒng)除了具有一定的集成化和智能化之外還應(yīng)該具有一定的自動(dòng)化,也就是說(shuō)系統(tǒng)能夠根據(jù)設(shè)計(jì)要求自動(dòng)地設(shè)計(jì)離合器、并對(duì)離合器的一些基本參數(shù)和零部件進(jìn)行校核分析和優(yōu)化。本文的第六章對(duì)離合器的結(jié)合模型進(jìn)行了分析,推導(dǎo)出了一些基本參數(shù)設(shè)計(jì)計(jì)算公式;對(duì)膜片彈簧的工作情況進(jìn)行了分析,運(yùn)用當(dāng)前國(guó)際上比較認(rèn)可的 A-L 法對(duì)膜片彈簧的載荷變形特性和應(yīng)力應(yīng)變特性進(jìn)行了仿真計(jì)算。汽車(chē)離合器基本參數(shù)優(yōu)化和膜片彈簧的優(yōu)化均采用復(fù)合形優(yōu)化算法,其中設(shè)計(jì)目標(biāo)、設(shè)計(jì)約束和設(shè)計(jì)變量的初始值,設(shè)計(jì)人員可以根據(jù)實(shí)際要求改變。根據(jù)設(shè)計(jì)和優(yōu)化了的離合器的基本參數(shù)、離合器的型式、初始條件,采用實(shí)例推理法和設(shè)計(jì)模板法初步設(shè)計(jì)離合器的各零部件,并自動(dòng)將其裝配起來(lái),形成離合器零部件及裝配模型的設(shè)計(jì)模板。設(shè)計(jì)模板是通過(guò)智能化實(shí)例推理技術(shù)從現(xiàn)有的實(shí)例中推理而來(lái), 然后用戶則在此基礎(chǔ)上采用交互的方式逐步改進(jìn)、往復(fù)設(shè)計(jì),直到滿足設(shè)計(jì)要求為止。因此這樣既發(fā)揮了計(jì)算機(jī)的輔助作用,也充分地?cái)U(kuò)展了人的主動(dòng)地位,真正地實(shí)現(xiàn)了自動(dòng)化設(shè)計(jì)和交互式設(shè)計(jì)相結(jié)合。 如何真正地實(shí)現(xiàn)如此復(fù)雜和先進(jìn)的汽車(chē)離合器 CAD 系統(tǒng),這不僅需要許多的汽車(chē)離合器設(shè)計(jì)和 CAD 方面的專業(yè)知識(shí),更需要很高的計(jì)算機(jī)軟件設(shè)計(jì)和計(jì)算機(jī)應(yīng)用水平。本人還對(duì)面向?qū)ο蟮某绦蛟O(shè)計(jì)方法和當(dāng)前的 Windows 操作系統(tǒng)進(jìn)行了研究,學(xué)習(xí)了多種程序設(shè)計(jì)語(yǔ)言和一些軟件開(kāi)發(fā)工具。運(yùn)用軟件工程的理論對(duì)ACCAD 系統(tǒng)進(jìn)行了需求分析、功能結(jié)構(gòu)分析、流程圖分析、方案設(shè)計(jì)、模塊設(shè)計(jì)。運(yùn)用面向?qū)ο蟮某绦蛟O(shè)計(jì)方法、多種程序設(shè)計(jì)語(yǔ)言,用 Visual Basic 和 Visual C+開(kāi)發(fā)工具設(shè)計(jì)并實(shí)現(xiàn)了汽車(chē)離合器 CAD 系統(tǒng)。一汽東光離合器廠已經(jīng)大量應(yīng)用該系統(tǒng),實(shí)踐證明 ACCAD 系統(tǒng)能夠很好的輔助設(shè)計(jì)人員設(shè)計(jì)離合器、能顯著地提高離合器產(chǎn)品的設(shè)計(jì)能力、大大縮短離合器產(chǎn)品的開(kāi)發(fā)周期,而且系統(tǒng)具有很高的穩(wěn)定性和可擴(kuò)充性。汽車(chē)汽車(chē) AMTAMT 自動(dòng)離合器接合過(guò)程的動(dòng)力學(xué)與控制研究自動(dòng)離合器接合過(guò)程的動(dòng)力學(xué)與控制研究隨著中國(guó)加入 WTO,中國(guó)汽車(chē)零部件企業(yè)面臨著越來(lái)越大的壓力和挑戰(zhàn), 全球性的跨國(guó)汽車(chē)及零部件公司正逐漸地入侵中國(guó)這一個(gè)世界上最大也是最后一個(gè)潛在汽車(chē)市場(chǎng)。國(guó)內(nèi)汽車(chē)行業(yè)尤其是汽車(chē)零部件與跨國(guó)公司相比,無(wú)論是從規(guī)模、資金實(shí)力、研發(fā)能力、還是管理水平上看,都不在一個(gè)數(shù)量級(jí)上。國(guó)內(nèi)零部件企業(yè)為了生存下去,必須從某個(gè)方面有所突破,形成一定的競(jìng)爭(zhēng)優(yōu)勢(shì)。過(guò)去,一直在國(guó)家關(guān)稅政策保護(hù)卜生存的中國(guó)汽車(chē)這一競(jìng)爭(zhēng)行業(yè)的企業(yè), 面臨著生存的危機(jī),競(jìng)爭(zhēng)力弱的很重要的一個(gè)原因就是產(chǎn)品開(kāi)發(fā)速度慢,水平低。究其原因,有的是開(kāi)發(fā)手段落后,有的是經(jīng)驗(yàn)不足,有的是開(kāi)發(fā)人員素質(zhì)達(dá)不到客觀要求,還有一個(gè)重要的原因,就是我們產(chǎn)品開(kāi)發(fā)的方式的落后。與液力自動(dòng)變速器(AT)和無(wú)級(jí)變速器(CVT)相比,機(jī)械自動(dòng)變速器(AMT) 的制造成本要低得多,且結(jié)構(gòu)簡(jiǎn)單,安裝方便,市場(chǎng)潛力巨大。作為 AM 下系統(tǒng)中的一個(gè)重要功能模塊,當(dāng)前自動(dòng)離合器在技術(shù)開(kāi)發(fā)中存在的主要問(wèn)題包括:復(fù)雜工況下起步失敗、沖擊劇烈、換檔不平穩(wěn)、摩擦片壽命縮短和響應(yīng)遲滯過(guò)大等。本文圍繞問(wèn)題的關(guān)鍵,即離合器接合過(guò)程瞬態(tài)響應(yīng)作了深入的理論分析和試驗(yàn)研究 發(fā)動(dòng)機(jī)、膜片彈簧、伺服執(zhí)行機(jī)構(gòu)等具有強(qiáng)非線性特性,這給自動(dòng)離合器系統(tǒng)最佳瞬態(tài)響應(yīng)的控制設(shè)計(jì)帶來(lái)困難。本文提出以系統(tǒng)綜合的方法來(lái)研究 AMT 自動(dòng)離合器的非線性動(dòng)力學(xué)與控制。根據(jù)汽車(chē)傳動(dòng)系統(tǒng)動(dòng)力學(xué)原理,被控主系統(tǒng)可以分統(tǒng)和傳動(dòng)系統(tǒng)。本文首次將 Popov 超穩(wěn)定性理論和參考模型自適應(yīng)控制結(jié)合并應(yīng)用于發(fā)動(dòng)機(jī)的狀態(tài)監(jiān)測(cè)。發(fā)動(dòng)機(jī)監(jiān)測(cè)器以精確的轉(zhuǎn)速預(yù)測(cè)為前提,通過(guò)構(gòu)建扁平化神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型,并根據(jù)遺忘因子思想改進(jìn)快速遞推算法,既減少網(wǎng)絡(luò)權(quán)矩陣的計(jì)算量,又充分發(fā)揮神經(jīng)網(wǎng)絡(luò)算法對(duì)非線性和非平穩(wěn)系統(tǒng)的自學(xué)習(xí)能力。比較分析表明,改進(jìn)算法可以確保發(fā)動(dòng)機(jī)狀態(tài)監(jiān)測(cè)是可靠和有效的。在建模過(guò)程中,膜片彈簧的載荷變形關(guān)系通常作為“黑箱”問(wèn)題,使得許多精確控制策略無(wú)法應(yīng)用。為此,本文進(jìn)一步發(fā)展了 Almen-Lazslo 法,推導(dǎo)出離合器接合過(guò)程中膜片彈簧的載荷變形非線性數(shù)學(xué)模型,解決了“黑箱”的精確建模問(wèn)題。通過(guò)協(xié)調(diào)二個(gè)子系統(tǒng)的控制量,可以得到一個(gè)綜合最優(yōu)動(dòng)態(tài)響應(yīng)。系統(tǒng)綜合為直接根據(jù)整車(chē)性能設(shè)計(jì)反饋控制器提供了方便,而且為解決“分層”控制思路帶來(lái)的響應(yīng)延遲和不精確性開(kāi)辟了一條有效的途徑。 沖擊度和滑摩功這兩個(gè)與傳動(dòng)系統(tǒng)狀態(tài)有關(guān)的性能指標(biāo)相互制約。本文采用最小值原理進(jìn)行多目標(biāo)最優(yōu)控制,首次得到以解析式表達(dá)的多目標(biāo)綜合最優(yōu)軌線。綜合最優(yōu)控制的真實(shí)意義在于給出了系統(tǒng)的最優(yōu)性能。為使控制系統(tǒng)不受系統(tǒng)不確定性因素和外界千擾的影響,設(shè)計(jì)了魯棒性強(qiáng)的滑??刂破?,保證系統(tǒng)能夠跟蹤綜合最優(yōu)軌線。數(shù)值仿真表明,當(dāng)高速開(kāi)關(guān)閥的節(jié)流孔流量系數(shù)、摩擦片的磨損量、摩擦系數(shù)、傳動(dòng)系的彈性系數(shù)等因素在允許范圍內(nèi)變化時(shí),滑??刂破鞯母櫿`差遠(yuǎn)低于一般的 PID 控制器。微分幾何理論為非線性動(dòng)力系統(tǒng)的分析提供了有力的工具。針對(duì)這一典型的仿射非線性系統(tǒng),通過(guò)反饋線性化方法構(gòu)建微分流形,得到原系統(tǒng)的相伴形。仿真和試驗(yàn)結(jié)果表明,該方法能簡(jiǎn)化控制系統(tǒng)的設(shè)計(jì),對(duì)工程應(yīng)用具有實(shí)際意義。在實(shí)施非線性控制中,本文首次將算子及其在頻域上對(duì)應(yīng)的變換引入到汽車(chē)電子控制領(lǐng)域。與常規(guī)的之算子相比,當(dāng)采樣周期趨于無(wú)窮小時(shí),算子的數(shù)字迭代格式精度更高,穩(wěn)定性更好。本文以非線性滑??刂破鳛閷?shí)例,從理論和工程應(yīng)用兩個(gè)方面探討了算子離散化控制的實(shí)現(xiàn)格式、誤差分析、以及穩(wěn)定性。這種方法在高頻采樣系統(tǒng)中具有工業(yè)應(yīng)用優(yōu)勢(shì),豐富了其新的應(yīng)用領(lǐng)域。 作為本項(xiàng)工作的重點(diǎn)之一,本文分別對(duì)自動(dòng)離合器系統(tǒng)的虛擬樣機(jī)仿真和實(shí)車(chē)試驗(yàn)。利用大型系統(tǒng)動(dòng)力學(xué)分析軟件 ADAMS,開(kāi)發(fā)出自動(dòng)離合器系統(tǒng)的虛擬樣機(jī)模型,通過(guò)虛擬試驗(yàn)分析離合器接合過(guò)程瞬態(tài)響應(yīng)的理論預(yù)測(cè)結(jié)果,為實(shí)車(chē)試驗(yàn)所需的液壓執(zhí)行器和計(jì)算機(jī)控制器的設(shè)計(jì)提供了可靠而有效的依據(jù)。自動(dòng)離合器控制器包括傳感器、微處理器及其接口;執(zhí)行器為液壓機(jī)構(gòu)。所有試驗(yàn)都在Santana LX 轎車(chē)上實(shí)車(chē)進(jìn)行,重點(diǎn)考察小油門(mén)、大載荷、高檔位、上坡等高難度工況。試驗(yàn)結(jié)果表明,本文實(shí)施的控制策略使自動(dòng)離合器的接合過(guò)程具有良好的動(dòng)態(tài)特性,對(duì)人的主觀意圖、汽車(chē)多變的工況和復(fù)雜的行駛環(huán)境具有自適應(yīng)能力,能夠保證發(fā)動(dòng)機(jī)不熄火,車(chē)輛平穩(wěn)起步和換檔,滑磨過(guò)程縮短,執(zhí)行機(jī)構(gòu)響應(yīng)迅速。仿真和實(shí)驗(yàn)結(jié)果均表明,本文提出的分析方法和控制技術(shù)能夠顯著提高AMT 自動(dòng)離合器的工作性能,為該技術(shù)的進(jìn)一步產(chǎn)品化開(kāi)發(fā)奠定了基礎(chǔ)。
收藏